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a b s t r a c t

In this work we establish the well-posedness for infinitesimal dislocation based gradi-
ent viscoplasticity with isotropic hardening for general subdifferential plastic flows.
We assume an additive split of the displacement gradient into non-symmetric elas-
tic distortion and non-symmetric plastic distortion. The thermodynamic potential
is augmented with a term taking the dislocation density tensor Curl p into ac-
count. The constitutive equations in the models we study are assumed to be of
self-controlling type. Based on the self-controlling property the existence of solu-
tions of quasi-static initial–boundary value problems under consideration is shown
using a time-discretization technique and a monotone operator method.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Within the framework of the strain gradient plasticity theory we study the existence and uniqueness
of solutions of quasistatic initial–boundary value problems arising in gradient viscoplasticity with isotropic
hardening. The models we study are introduced in [1] and use rate-dependent constitutive equations with
internal variables to describe the deformation behaviour of metals at infinitesimally small strain.
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Setting of the problem. Let Ω ⊂ R3 be an open bounded set, the set of material points of the solid
body, with a C1-boundary ∂Ω . By Te we denote a positive number (time of existence), which can be chosen
arbitrarily large, and for 0 < t ≤ Te

Ωt = Ω × (0, t).

The sets,M3 and S3 denote the sets of all 3×3-matrices and of all symmetric 3×3-matrices, respectively. We
recall that the space of all 3× 3-matricesM3 can be isomorphically identified with the space R9. Therefore
we can define a linear mapping B : RN → M3 as a composition of a projector from RN onto R9 and the
isomorphism between R9 andM3. The transpose BT :M3 → RN is given then by

BT τ = (ẑ, 0)T

for τ ∈M3 and z = (ẑ, z̃)T ∈ RN , ẑ ∈ R9, z̃ ∈ RN−9. Let sl(3) be the set of all traceless 3× 3-matrices, i.e.

sl(3) = {v ∈M3 | tr v = 0}.

Unknown in our small strain formulation are the displacement u(x, t) ∈ R3 of the material point x at time
t and the vector of the internal variables z = (p, γ) ∈ R10. Here, p(x, t) ∈ sl(3) denotes the non-symmetric
infinitesimal plastic distortion and γ(x, t) ∈ R is the isotropic hardening variable with p = Bz. The condition
p(x, t) ∈ sl(3) expresses the plastic incompressibility.

Contrary to more classical strain gradient approaches, the models we study here feature a non-symmetric
plastic distortion field p ∈ M3 (see [2,3]), a dislocation based energy storage based solely on ∥Curlp∥ and
second gradients of the plastic distortion in the form of Curl Curlp acting as dislocation based kinematical
backstresses.

As is usual in plasticity theory, we split the total displacement gradient into non symmetric elastic and
plastic distortions

∇u = e+ p.

For invariance reasons (see [1,2] for more details), the elastic energy contribution may only depend on the
elastic strains sym e = sym(∇u − p).3 While p is non-symmetric, a distinguishing feature of the model is
that, similar to classical approaches, only the symmetric part εp := sym p of the plastic distortion appears
in the local Cauchy stress σ, while the higher order stresses are non-symmetric (see [4,5] for more details).

The model equations of the problem are

−divxσ(x, t) = b(x, t), (1)
σ(x, t) = C[x](sym(∇xu(x, t)−Bz(x, t))), (2)
∂tz(x, t) ∈ g


x,Σ lin(x, t)


, Σ lin = Σ lin

e + Σ lin
sh + Σ lin

curl, (3)
Σ lin

e = BTσ, Σ lin
sh = −Lz, Σ lin

curl = −C1B
TCurl Curl(Bz),

which must be satisfied in Ω × [0, Te). Here, Σ lin is the infinitesimal Eshelby stress tensor driving the
evolution of the plastic distortion p. The initial condition and Dirichlet boundary condition are

z(x, 0) = 0, x ∈ Ω , (4)
Bz(x, t)× n(x) = 0, (x, t) ∈ ∂Ω × [0, Te), (5)
u(x, t) = 0, (x, t) ∈ ∂Ω × [0, Te), (6)

where n is a normal vector on the boundary ∂Ω . For simplicity we consider only homogeneous boundary
condition. The elasticity tensor C[x] : S3 → S3 is a linear, symmetric, uniformly positive definite mapping.

3 Here, sym :M3 →M3 denotes the symmetrization operator.
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