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In this paper, we study a reaction–diffusion–advection system modeling the
competition of harmful algae with seasonal variations in a flowing water habitat.
We assume that harmful algae produce toxins, which have inhibitory effects on
their algal competitors, that is, the produced toxins can inhibit the growth of its
competitor. For the single population model, we prove that the algae will be washed
out eventually if the trivial periodic state is locally asymptotically stable, while
there exists a unique positive periodic state which is globally attractive if the trivial
periodic state is unstable. When there is mutual invasibility of both semitrivial
periodic solutions of the two-species model, we are able to prove the existence of
periodic coexistence state.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Harmful algal blooms (HABs) have increased in frequency and intensity worldwide, in coastal and inland
waters [1,2]. Associated implications include disruption of aquatic ecosystems and food webs, pollution of
human food supplies and other health risks, and large fish kills. Those impacts have caused millions of dollars
in economic losses. For example, Prymnesium parvum (golden algae) is a species particularly associated with
numerous HABs in coastal and brackish inland waters. The toxins produced by Prymnesium parvum are
lethal to fish and have toxic effects on many other aquatic organisms.

A potential technique has been suggested to manage and mitigate harmful algal blooms through flow
manipulations in some riverine systems [3–5]. This possibility motivates researchers to do mathematical
modeling describing the dynamics of harmful algal and the toxins produced in a flowing habitat. To
understand the longitudinal distribution of algal abundance and toxicity arising along the axis of flow, the
authors in [6] proposed two reaction–diffusion–advection systems modeling the growth of single population
of harmful algae and the production and decay of its toxin in an idealized riverine reservoir, where a main
channel was coupled to a hydraulic storage zone. We should point out that those PDE systems proposed
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in [6] only involve single population growth in spatially varying and temporally constant environments, and
their mathematical analysis can be found in [7,8].

It was observed that harmful algae can produce toxins, which have inhibitory or allelopathic effects on their
algal competitors [9–11]. The production of toxins can be an important factor that influences competitive
dynamics [12]. Recently, the authors in [13,14] investigated mathematical models of two species competing
for resources in a well-mixed chemostat, and species also compete through allelopathy. That is, each species
produces a toxin that induces mortality in its competitor. We note that the authors in [15,16] also studied
several mathematical models of the effect of inhibition on microbial competition in a chemostat environment.
Another motivation of this paper is from [17], where a number of significant processes are incorporated,
including production and degradation of toxins, allelopathy, zooplankton grazing and its inhibition by toxins
produced by other organisms in a well-mixed habitat with temporal variations (see [17, Section 8]).

In this study, we aimed at understanding of competition between two algal species for a nutrient resource
in a riverine habitat with spatiotemporal variations, and each species produces a toxin that reduces the
growth rate of its competitor. Some potential complications are neglected here. For example, we remove
the compartment of zooplankton from our system, and we ignore the hydraulic storage zone in our riverine
reservoir. Rather than considering the habitat with a storage zone [18,17], our habitat is a riverine reservoir
occupying a simple channel of longitudinally invariant cross-section that was formulated by Kung and
Baltzis [19]. Such simplifications permit us to concentrate on the investigation of competition and inhibition
between two independent species in spatially and temporally environments.

We first give some physical settings of the river system (see, e.g., [6,19,20]). Flow enters at the upstream
end of the channel (x = 0), and an equal flow exits at the downstream end (x = L). Flow is parameterized at a
constant dilution rate D (time−1), and assuming constant water volume in the channel implies that advection
occurs at a speed ν (ν = DL). The flow of water in the channel in the direction of increasing x brings fresh
nutrient at a concentration R(0)(t) into the reactor at x = 0 and carries medium, unused nutrient and
organisms out of the reactor at x = L. Nutrient and organisms are assumed to diffuse throughout the vessel
with the same diffusivity δ. Both advective and diffusive transports occur at the upstream boundary (x = 0).
The downstream boundary is assumed to be a dam, over which there is advective flow but through which
no diffusion can take place. Let R(x, t) be the nutrient concentration at location x and time t; let Ni(x, t)
be the concentrations of species i in flowing habitats, respectively, and let Pi(x, t) be the concentration of
the inhibitor producing by Ni(x, t). With these assumptions, we consider the following system:
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(1)

with boundary conditions 
νR(0, t)− δ ∂R

∂x
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(2)
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