
Nonlinear Analysis: Real World Applications 23 (2015) 160–182

Contents lists available at ScienceDirect

Nonlinear Analysis: Real World Applications

journal homepage: www.elsevier.com/locate/nonrwa

Existence of strong solutions to the equations of unsteady
motion of shear thickening incompressible fluids
Hyeong-Ohk Bae a,∗, Jörg Wolf b
a Department of Financial Engineering, Ajou University, Republic of Korea
b Humboldt University of Berlin, Berlin, Germany

a r t i c l e i n f o

Article history:
Received 25 July 2014
Received in revised form 8 December 2014
Accepted 10 December 2014
Available online 31 December 2014

Keywords:
Shear thickening fluid
Strong solution
Weighted estimate
Difference quotient
Non-Newtonian fluid
Short time regularity

a b s t r a c t

We address the existence of strong solutions to a system of equations of motion of an
incompressible non-Newtonian fluid. Our aim is to prove the short-time existence of strong
solutions for the case of shear thickening viscosity, which corresponds to the power law
ν(D) =| D |

q−2 (2 < q < +∞). In particular, we find that global strong solutions exist
whenever q > 2.23 . . .. The results are obtained by flattening the boundary and by using
the difference quotient method. Near the boundary, we use weighted estimates in the
normal direction.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the existence of strong solutions of an incompressible fluid with shear thickening viscosity, which includes
the Ostwald–deWaelemodel (see [1]). Ladyzhenskaya first studied such a flow in [2]. Existence of weak solutions have been
proved in [3] and for the general case in [4,5].

LetΩ ⊂ R3 be a bounded domain. Given 0 < T < ∞, we denote by QT the space time cylinderΩ×]0, T [. We consider
a non-Newtonian incompressible fluid governed by the following system of PDEs:

div u = 0 in QT , (1.1)
∂tu + (u · ∇)u − div σ = f − ∇p in QT . (1.2)

The notation u · ∇ stands for the sum ui∂xi , where repeated subscripts and superscripts imply summation over i = 1 to
i = 3. Here, u = (u1, u2, u3)⊤ denotes the unknown velocity of the fluid and p the pressure. Furthermore, f = (f 1, f 2, f 3)⊤
denotes a given external force. In addition, in the second equation σ = (σij) denotes the deviatoric stress, which is defined
by

σij = Sij(D(u)) (i, j = 1, 2, 3), D(u) =
1
2
(∇u + (∇u)⊤).

Then T := σ − Ip is called the full stress, such that −divT represents the sum of the internal forces due to friction, which
depends mostly on the material of the fluid. In engineering practice, models of fluids with shear-rate-dependent viscosity,
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i.e., S(D(u)) = ν(|D(u)|)D(u), are frequently used. One of themost popularmodels among such fluids is that of the so-called
power-law fluids of the following types (1 < q < ∞):

(M1) ν(s) = ν0 + ν1sq−2,

(M2) ν(s) = ν2(1 + s)q−2,

(M3) ν(s) = ν3sq−2,

where ν0, . . . , ν3 are constants. Here, the fluid is called shear thinning if 1 < q < 2 and shear thickening if 2 < q < +∞.
For more details regarding the fluid mechanical background see, e.g., [6].

From themathematical point of view, the third case is themost difficult one, owing to its degenerate behavior, especially
in the shear thickening case, 2 < q < +∞. Now, we impose the following conditions on S = (Sij) including themodel (M3):

Let M3×3
sym denote the space of all symmetric matrices A = {Aij} equipped with the scalar product A : B = AijBij and norm

|A| =
√
A : A. Then, let S : M3×3

sym → M3×3
sym be differentiable, fulfilling the following:

(i) Growth condition: For all A ∈ M3×3
sym

S(A) ≤ c1|A|
q−1, |∂AS(A)| ≤ c2|A|

q−2. (1.3)

(ii) Coercivity: For all A, B ∈ M3×3
sym

∂AklSij(A)BijBkl ≥ c3|A|
q−2

|B|
2.

(iii) Potential: There exists ϕ : M3×3
sym → R such that, for all A ∈ M3×3

sym ,

∂Aϕ = S, c3|A|
q
≤ ϕ(A) ≤ c4|A|

q. (1.4)

Here, ci = const. > 0 (i = 1, . . . , 4).
We complete the system (1.1), (1.2) with the following boundary and initial conditions:

u = 0 on ∂Ω×]0, T [, (1.5)
u = u0 onΩ × {0}. (1.6)

The aim of this article is to show the short-time existence of strong solutions in case of shear thickening fluids, 2 < q <
+∞, and the global existence of strong solutions for q sufficiently large, possibly strictly less than 9/4 under the boundary
condition (1.5).

In some applications it might be necessary to replace the no-slip boundary condition by other ones such as slip-type
boundary conditions. Formore details, refer to [7,8]. Our approach to the regularity up to the boundary is based on estimates
in tangential directions and weighted estimates in normal direction. Hence, we believe our results remain true with such
slip boundary conditions. However, it requires additional work, so we leave this problem for a future project.

The short-time existence of strong solutions in the shear thinning case, 1 < q < 2, has been proved in [9] for (M3) and
in [10] for (M2) for the problem (1.1), (1.2) with periodic boundary conditions. The existence of a global strong solution for
models (M1) and (M2) has been proved in [3] for q ≥

9
4 . A regularity result for model (M1) with a no-slip boundary condition

has also been obtained in [11] for q ≥
12
5 . The regularity of the local-in-time weak solution for models (M2) and (M3) has

been obtained in [8] for q > 11
5 . The short-time regularity of the weak solution for model (M2) has been obtained in [12].

For q = 2, the result is well known.
Next, let us introduce the notion of aweak solution.We start by introducing some relevant notation and suitable function

spaces. We denote the usual Sobolev spaces or Lebesgue spaces by W k, s(Ω), W k, s
0 (Ω), or Ls(Ω) (1 ≤ s ≤ +∞; k ∈ N).

Throughout the paper, bold letters indicate spaces of vector functions or vector functions. Thus,wewriteW 1, s(Ω),W 1, s
0 (Ω),

etc. instead ofW 1, s(Ω; RN), W 1, s
0 (Ω; RN), etc. (N ∈ N,N > 1).

Next, we denote by C∞
c,σ (Ω) the space of all solenoidal smooth vector fields in R3 having its support inΩ . Thenwe define

Ls
σ (Ω) = completion of C∞

c,σ (Ω) in the norm of Ls(Ω),

W 1,s
0,σ (Ω) = completion of C∞

c,σ (Ω) in the norm of W 1,s
0 (Ω).

Let X be a Banach space. Then by Ls(a, b; X) (a < b), we denote the space of all Bochnermeasurable functions f : (a, b) → X
such that T

0
∥f (t)∥s

Xds < +∞ if 1 ≤ s < ∞, ess sup
t∈]0,T [

∥f (t)∥X if 1 ≤ s = ∞.

Definition 1.1. Let u0 ∈ L2
σ (Ω) and let f ∈ Lq

′

(0, T ;W−1, q′

(Ω)). We call u ∈ C∞
w ([0, T ]; L2

σ (Ω)) ∩ Lq(0, T ;W 1, q
0,σ (Ω)) a

weak solution to (1.1)–(1.6) with bounded energy if
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