

Contents lists available at ScienceDirect

Nonlinear Analysis: Real World Applications

www.elsevier.com/locate/nonrwa

Existence and multiplicity of solutions for the Kirchhoff equations with asymptotically linear nonlinearities

Lin Li^{a,*}, Ji-Jiang Sun^b

ARTICLE INFO

Article history: Received 25 January 2015 Received in revised form 15 June 2015 Accepted 10 July 2015 Available online 29 July 2015

Keywords:
Kirchhoff equation
Variational methods
Radial solutions
Without Ambrosetti-Rabinowitz
condition

ABSTRACT

In this paper we study the nonlinear Kirchhoff equations on the whole space. We show the existence, non-existence, and multiplicity of solutions to this problem with asymptotically linear nonlinearities. This result can be regarded as an extension of the result in Li et al. (2012).

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction and main result

In this paper, we study the existence, non-existence, and multiplicity of solutions to the following Kirchhoff equation in \mathbb{R}^N $(N \ge 3)$:

$$-\left(1+b\int_{\mathbb{R}^N}(|\nabla u|^2+V(x)u^2)dx\right)\Delta u+V(x)u=f(u)\quad\text{in }\mathbb{R}^N,\tag{\mathcal{P}}$$

where b > 0 is a parameter, V(x) and f(u) satisfy the following hypotheses:

(V1)
$$V(x) \in C(\mathbb{R}^N, \mathbb{R})$$
 and $V(x) \equiv V(|x|) \geq V_0 > 0$ for all $x \in \mathbb{R}^N$;

(V2)
$$\lim_{|x|\to\infty} V(x) = V(\infty) \in (0, +\infty);$$

(F1)
$$f \in C(\mathbb{R}, \mathbb{R})$$
 and $\lim_{s \to 0} \frac{f(s)}{s} = 0$;

E-mail addresses: lilin420@gmail.com (L. Li), sunjijiang2005@163.com (J.-J. Sun).

^a School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, PR China

^b Department of Mathematics, Nanchang University, Nanchang 330031, PR China

 $^{^*}$ Corresponding author.

(F2) there exists $l \in (\Lambda, V(\infty))$ such that $\lim_{|s| \to \infty} \frac{f(s)}{s} = l$, where Λ is the infimum of the spectrum of the Schrödinger operator $-\Delta + V$, i.e.,

$$\varLambda = \inf_{u \in H^1(\mathbb{R}^N) \backslash \{0\}} \frac{\int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)u^2) dx}{\int_{\mathbb{R}^N} u^2 dx};$$

(F3) f(-s) = f(s) for all $s \in \mathbb{R}$.

Let us define the functional $\mathcal{I}_b(u): H^1_r(\mathbb{R}^N) \to \mathbb{R}$ by

$$\mathcal{I}_{b}(u) = \frac{1}{2} \int_{\mathbb{R}^{N}} (|\nabla u|^{2} + V(x)u^{2}) dx + \frac{b}{4} \left(\int_{\mathbb{R}^{N}} (|\nabla u|^{2} + V(x)u^{2}) dx \right)^{2} - \int_{\mathbb{R}^{N}} F(u) dx, \tag{1}$$

where $H_r^1(\mathbb{R}^N)$ denotes a radial function Sobolev space and $F(u) = \int_0^u f(t)dt$. Then, the critical points of $\mathcal{I}_b \in C^1$ provide the solutions of (\mathcal{P}) .

The problem (\mathcal{P}) is related to the stationary analogue of the Kirchhoff equation

$$u_{tt} - \left(1 + b \int_{\Omega} |\nabla_x u|^2 dx\right) \Delta_x u = g(x, u) \tag{2}$$

which was proposed by G. Kirchhoff in 1883 (see [1]) as a generalization of the well-known d'Alembert's wave equation

$$\rho \frac{\partial^2 u}{\partial t^2} - \left(\frac{P_0}{h} + \frac{E}{2L} \int_0^L \left| \frac{\partial u}{\partial x} \right|^2 dx \right) \frac{\partial^2 u}{\partial x^2} = g(x, u)$$

for free vibrations of elastic strings. Kirchhoff's model takes into account the changes in length of the string produced by transverse vibrations. Here, L is the length of the string, h is the area of the cross section, E is the Young modulus of the material, ρ is the mass density and P_0 is the initial tension. The early classical studies of Kirchhoff equation were those of S. Bernstein [2] and S. I. Pohožaev [3]. However, Eq. (2) received great attention only after that J.-L. Lions [4] proposed an abstract framework for the problem.

Recently, using variational method, J. Jin and X. Wu [5] obtained the existence of infinitely many radial solutions for problem (\mathcal{P}) with V(x)=1 in \mathbb{R}^N using the Fountain theorem. Next, A. Azzollini et al. [6] get a multiplicity result concerning the critical points of a class of functionals involving local and nonlocal nonlinearities, then they apply their result to the nonlinear elliptic Kirchhoff equation (\mathcal{P}) in \mathbb{R}^N assuming on the local nonlinearity has the general hypotheses introduced by H. Berestycki and P.-L. Lions [7]. In [8], A. Azzollini presents a very simple proof of the existence of at least one nontrivial solution for a Kirchhoff-type equation on \mathbb{R}^N , for N>3. In particular, in the first part of the paper he is interested in studying the existence of a positive solution to the elliptic Kirchhoff equation under the effect of a nonlinearity satisfying the general Berestycki–Lions assumptions. In the second part, he looks for ground states using minimizing arguments on a suitable natural constraint. Very recently, Y. Li et al. [9] used A. Azzollini's idea to study the existence of at least one positive radial solution to the following nonlinear Kirchhoff-type equation:

$$\left(a + \lambda \int_{\mathbb{R}^N} |\nabla u|^2 + \lambda b \int_{\mathbb{R}^N} u^2\right) \left[-\Delta u + bu\right] = f(u) \tag{3}$$

in \mathbb{R}^N , where $N \geq 3$, a,b are positive constants, and $\lambda \geq 0$ is a parameter. The main result does not assume the usual compactness conditions. A cut-off functional associated with (3) is utilized to obtain bounded Palais–Smale sequences. Their result can be regarded as an extension of a classical result for the semilinear equation

$$-\Delta u + bu = f(u)$$

Download English Version:

https://daneshyari.com/en/article/837120

Download Persian Version:

https://daneshyari.com/article/837120

Daneshyari.com