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In this paper we study the nonlinear Kirchhoff equations on the whole space. We
show the existence, non-existence, and multiplicity of solutions to this problem with
asymptotically linear nonlinearities. This result can be regarded as an extension of
the result in Li et al. (2012).
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1. Introduction and main result

In this paper, we study the existence, non-existence, and multiplicity of solutions to the following Kirchhoff
equation in RN (N ≥ 3):

−


1 + b


RN

(|∇u|2 + V (x)u2)dx


∆u+ V (x)u = f(u) in RN , (P)

where b > 0 is a parameter, V (x) and f(u) satisfy the following hypotheses:

(V1) V (x) ∈ C(RN ,R) and V (x) ≡ V (|x|) ≥ V0 > 0 for all x ∈ RN ;
(V2) lim|x|→∞ V (x) = V (∞) ∈ (0,+∞);
(F1) f ∈ C(R,R) and lims→0

f(s)
s = 0;
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(F2) there exists l ∈ (Λ, V (∞)) such that lim|s|→∞ f(s)s = l, where Λ is the infimum of the spectrum of the
Schrödinger operator −∆ + V , i.e.,

Λ = inf
u∈H1(RN )\{0}


RN (|∇u|2 + V (x)u2)dx

RN u
2dx

;

(F3) f(−s) = f(s) for all s ∈ R.

Let us define the functional Ib(u) : H1
r (RN )→ R by

Ib(u) = 1
2


RN

(|∇u|2 + V (x)u2)dx+ b

4


RN

(|∇u|2 + V (x)u2)dx
2
−


RN
F (u)dx, (1)

where H1
r (RN ) denotes a radial function Sobolev space and F (u) =

 u
0 f(t)dt. Then, the critical points of

Ib ∈ C1 provide the solutions of (P).
The problem (P) is related to the stationary analogue of the Kirchhoff equation

utt −


1 + b


Ω

|∇xu|2dx


∆xu = g(x, u) (2)

which was proposed by G. Kirchhoff in 1883 (see [1]) as a generalization of the well-known d’Alembert’s
wave equation

ρ
∂2u

∂t2
−


P0
h

+ E

2L

 L
0

∂u∂x
2 dx


∂2u

∂x2 = g(x, u)

for free vibrations of elastic strings. Kirchhoff’s model takes into account the changes in length of the string
produced by transverse vibrations. Here, L is the length of the string, h is the area of the cross section, E
is the Young modulus of the material, ρ is the mass density and P0 is the initial tension. The early classical
studies of Kirchhoff equation were those of S. Bernstein [2] and S. I. Pohoz̃aev [3]. However, Eq. (2) received
great attention only after that J.-L. Lions [4] proposed an abstract framework for the problem.

Recently, using variational method, J. Jin and X. Wu [5] obtained the existence of infinitely many radial
solutions for problem (P) with V (x) = 1 in RN using the Fountain theorem. Next, A. Azzollini et al. [6]
get a multiplicity result concerning the critical points of a class of functionals involving local and nonlocal
nonlinearities, then they apply their result to the nonlinear elliptic Kirchhoff equation (P) in RN assuming
on the local nonlinearity has the general hypotheses introduced by H. Berestycki and P.-L. Lions [7]. In [8],
A. Azzollini presents a very simple proof of the existence of at least one nontrivial solution for a Kirchhoff-
type equation on RN , for N > 3. In particular, in the first part of the paper he is interested in studying the
existence of a positive solution to the elliptic Kirchhoff equation under the effect of a nonlinearity satisfying
the general Berestycki–Lions assumptions. In the second part, he looks for ground states using minimizing
arguments on a suitable natural constraint. Very recently, Y. Li et al. [9] used A. Azzollini’s idea to study
the existence of at least one positive radial solution to the following nonlinear Kirchhoff-type equation:

a+ λ


RN
|∇u|2 + λb


RN

u2


[−∆u+ bu] = f(u) (3)

in RN , where N ≥ 3, a, b are positive constants, and λ ≥ 0 is a parameter. The main result does not assume
the usual compactness conditions. A cut-off functional associated with (3) is utilized to obtain bounded
Palais–Smale sequences. Their result can be regarded as an extension of a classical result for the semilinear
equation

−∆u+ bu = f(u)
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