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a b s t r a c t

Weconsider amathematicalmodelwhich describes the dynamic evolution of a viscoelastic
body in frictional contactwith an obstacle. The contact ismodelledwith normal compliance
and unilateral constraint, associated to a rate slip-dependent version of Coulomb’s law of
dry friction. In order to approximate the contact conditions, we consider a regularized
problem wherein the contact is modelled by a standard normal compliance condition
without finite penetrations. For each problem, we derive a variational formulation and an
existence result of theweak solution of the regularized problem is obtained. Next, we prove
the convergence of the weak solution of the regularized problem to the weak solution of
the initial nonregularized problem. Then, we introduce a fully discrete approximation of
the variational problem based on a finite element method and on a second order time
integration scheme. The solution of the resulting nonsmooth and nonconvex frictional
contact problems is presented, based on approximation by a sequence of nonsmooth
convex programming problems. Finally, some numerical simulations are provided in order
to illustrate both the behaviour of the solution related to the frictional contact conditions
and the convergence result.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic contact problems abound in industry and everyday life. For this reason, a considerable attention on modelling,
mathematical analysis and numerical solution of such problems has been achieved recently in the engineering and
mathematical literature. Owing to their inherent complexity, frictional contact phenomena lead to nonlinear, nonsmooth
and nonconvex mathematical problems.

Various contact boundary conditions have been used to model contact phenomena, both in the engineering and mathe-
matical topics and their modelling is still under investigation, see for instance [1–15] and the references therein. The estab-
lishment of improved frictional contact models is crucial to derive and analyse mathematical problems in good agreement
with the physical point of view. Furthermore, this establishment permits to provide reliable numerical solution with accu-
rate simulations.
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In the case of contact between a deformable body and a rigid foundation, Signorini condition [16] and normal compliance
contact condition introduced in [17] are the most popular contact models used in the literature, see [4–6,10,11,14,15,18].
The Signorini condition describes the contact with a perfectly rigid foundation whereas the normal compliance describes
the contact with an elastic foundation. These models are both questionable from a physical point of view since a perfectly
rigid foundation is idealistic and an elastic foundation is too approximative and allows penetrations. A more realistic and
general contact condition, called the normal compliance condition with unilateral constraint, was introduced in [19]. This
model permits to control the penetration due to the normal compliance by the unilateral constraint; this penetration can be
interpreted by the presence of microasperities on the surface of the foundation. This model contains as particular cases both
the Signorini contact condition and the normal compliance condition, and it models the contact with an elastic–rigid foun-
dation. Furthermore, the phenomenon of friction is inseparable from that of the contact. In particular, the interface asperities
play a significant role in the establishment of the relationship between contact force and frictional force. The friction is gen-
erally modelled in the literature by the so-called Tresca and Coulomb friction laws. The classical monotone version of these
laws with a friction coefficient assumed to be a constant, have shown their limits for friction-induced phenomena such as
stick–slip motion. Then, many authors in the literature have introduced nonmonotone versions of friction laws [20–25]. For
all these reasons, the consideration of a nonmonotone friction associated to a contact model based on normal compliance
contact with unilateral constraint is of great interest.

The aim of this paper is to study a dynamic frictional contact problem in which the contact is modelled with normal
compliance of such a type that the penetration, characterized by the size of the asperities, is restricted with unilateral con-
straint. Furthermore, the friction ismodelledwith a nonmonotone law inwhich the friction bound depends on the tangential
velocities and the size of the asperities.

The analysis of mathematical models formulated by using a frictional contact condition with normal compliance,
unilateral constraint and slip dependent friction can be found in [26,27]. There, the process considered was static and the
material’s behaviour was describedwith an elastic constitutive law. In [26], the friction bound is assumed to depend both on
the tangential displacement and on the value of the depth of the penetration. The weak solvability of the model was proved
by using arguments on pseudomonotone operators followed by a passage to the limit procedure; a convergence result was
proved and its numerical validation was also provided. The work realized in [27] represents a continuation of [26] in which
there is considered the different frictional contact model, able to describe the transition from the Coulomb to the Tresca
friction laws during the passage from the normal compliance to unilateral constraint. Furthermore, in [27] the elasticity
operator is nonlinear and the weak solvability of the problem was proved by using arguments of elliptic quasivariational
inequalities; error estimates and numerical simulations are also provided.

The current paper represents a continuation of [26,27]. We consider a dynamic contact model with normal compliance,
unilateral constraint and slip-dependent friction law for viscoelastic materials, and we provide its weak solvability and
numerical solution together with simulations results. With respect to [26,27], the current paper presents some traits
of novelties which we describe in what follows. The process is assumed to be dynamic and the material’s behaviour
is viscoelastic. Then, the frictional contact model we consider here is different, since the friction model based on that
introduced in [27] uses a slip rate dependent friction. In the present paper we consider also two dynamic frictional contact
problems with normal compliance, finite penetration and nonmonotone friction law. The first problem is characterized
by normal compliance in which the penetration is restricted by unilateral constraint and the second problem represents
a regularization of the first problem by considering unlimited penetration. For the regularized problem, we prove the
existence of the weak solution. A trait of novelty of this paper arises from the fact that here we state and prove the
convergence of the solution of the nonmonotone friction problem with normal compliance and unlimited penetration to
the solution of the nonmonotone friction problem with normal compliance and finite penetration. This convergence result
leads to the solvability of the initial nonregularized problem. The approach is based on [2,9], where a dynamic problemwith
Signorini condition and averaged contact force in the friction condition was considered, and the solution of the problem
with infinite penetration was shown to converge in appropriate topology to the solution of the problem with unilateral
constraints. Finally, we provide a numerical solution together with simulations which illustrate the mechanical behaviour
of the frictional contact model and provide a numerical validation of the convergence result.

The rest of the paper is structured as follows. In Section 2 we introduce the notation we shall use as well as some prelim-
inary material. In Section 3 we present the classical formulation of the frictional contact problem, we list the assumptions
on the data and derive the variational formulation of the initial and approximate problems. Then, in Section 4 we state and
prove the existence of the weak solution of the approximate problems. Section 5 is devoted to state and prove the conver-
gence result. In Section 6 the numerical solution of the frictional contact problem is presented. And, finally, in Section 7
we present some numerical simulations on an academic two-dimensional example including a numerical validation of the
convergence result.

2. Notation and preliminaries

We denote R+ = [0, ∞). Moreover d ∈ {2, 3} and Ω ⊂ Rd is a bounded and open set with a sufficiently smooth
(Lipschitz) boundary. The boundary of Ω is divided into three disjoint parts ∂Ω = Γ̄1 ∪ Γ̄2 ∪ Γ̄3 that are such that Γ1 and Γ3
have positive boundary measure. The scalar product and norm in Rd are denoted by · and ∥ · ∥ respectively. By Sd we denote
the space of symmetric d × d matrices and we use the notation σ : ε =

d
i,j=1 σ ijεij valid for σ, ε ∈ Sd.
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