Dynamic contact of a beam against rigid obstacles: Convergence of a velocity-based approximation and numerical results

Yves Dumont ${ }^{\text {a }}$, Laetitia Paoli ${ }^{\text {b,c,* }}$
${ }^{\text {a }}$ CIRAD, UMR AMAP, Boulevard de la Lironde, 34398 Montpellier Cedex 5, France
${ }^{\text {b }}$ Université de Lyon, Institut Camille Jordan UMR 5208, France
${ }^{\text {c }}$ Université Jean Monnet, 23 rue Paul Michelon, 42023 Saint-Etienne Cedex 02, France

A R T I CLE I N F O

Article history:

Received 13 April 2014
Accepted 26 September 2014
Available online 27 October 2014

This work is dedicated to the memory of J.J. Moreau

Keywords:

Dynamic contact
Elastic beam
Non-penetrability conditions
Sweeping process
Space and time discretization
Convergence

Abstract

Motivated by the study of vibrations due to looseness of joints, we consider the motion of a beam between rigid obstacles. Due to the non-penetrability condition, the dynamics is described by a hyperbolic fourth order variational inequality. We build a family of fully discretized approximations of this problem by combining some classical space discretizations with velocity based time-stepping algorithms for discrete mechanical systems subjected to unilateral constraints. We prove the stability and the convergence of these numerical methods. Finally we propose some examples of implementation using either Hermite or B-spline finite element approximations.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In many industrial devices, looseness of joints leads to unwanted vibrations which may cause untimely wear, defective behaviour or noise. Such bad consequences are often related to the occurrence of impacts between parts of the device. Motivated by this kind of problems, we will consider in this paper the dynamics of an elastic beam between rigid obstacles.

More precisely, we will denote by L the length of the beam and by $u(x, t),(x, t) \in[0, L] \times[0, T], T>0$, the vertical displacement of a point x belonging to the beam axis. Then the shear stress is given by

$$
\sigma=-k^{2} u_{x x x}, \quad k^{2}=\frac{E I}{\rho S}
$$

where E and ρ are the Young's modulus and the density of the material and S and I are the surface and the inertial momentum of the cross section of the beam. See Fig. 1.

[^0]

Fig. 1. Beam between longitudinal rigid obstacles.
The motion is limited by some rigid obstacles which position under and above the beam is characterized by two mappings $g_{1}, g_{2}:[0, L] \rightarrow \mathbb{R} \cup\{-\infty,+\infty\}$ such that

$$
\begin{equation*}
g_{1}(x) \leq-g<0<g \leq g_{2}(x) \quad \forall x \in[0, L] \tag{1.1}
\end{equation*}
$$

with $g \in \mathbb{R}_{*}^{+}$. Let us observe that g_{1} and/or g_{2} are not assumed to be continuous and $g_{1}(x)$ and/or $g_{2}(x)$ may take infinite values allowing to consider either longitudinal or punctual obstacles. The beam is clamped at its left end while it can move freely between the obstacles at its right end. Furthermore we assume that the motion is planar.

For the variational formulation of the problem, we introduce the following functional spaces:

$$
H=L^{2}(0, L), \quad V=\left\{w \in H^{2}(0, L) ; w(0)=w_{x}(0)=0\right\}
$$

and the convex set

$$
K=\left\{w \in V ; g_{1}(x) \leq w(x) \leq g_{2}(x) \forall x \in[0, L]\right\} .
$$

Then, for any given density of external forces $f \in L^{2}(0, T ; H)$ and initial data $u_{0} \in K, v_{0} \in H$, the dynamics of the beam is described by (see [1] or [2,3])

$$
(P)\left\{\begin{array}{l}
\text { Find } u \in L^{2}(0, T ; K) \text { such that } u_{t} \in L^{2}(0, T ; H), u(\cdot, 0)=u_{0} \text { and } \\
\quad-\int_{0}^{T} \int_{0}^{L} u_{t}(x, t)\left(w_{t}(x, t)-u_{t}(x, t)\right) d x d t+k^{2} \int_{0}^{T} \int_{0}^{L} u_{x x}(x, t)\left(w_{x x}(x, t)-u_{x x}(x, t)\right) d x d t \\
\geq \\
\geq \int_{0}^{L} v_{0}(x)\left(w(x, 0)-u_{0}(x)\right) d x+\int_{0}^{T} \int_{0}^{L} f(x, t)(w(x, t)-u(x, t)) d x d t \\
\forall w \in L^{2}(0, T ; K) \text { such that } w_{t} \in L^{2}(0, T ; H) \text { and } w(\cdot, T)=u(\cdot, T) .
\end{array}\right.
$$

For this kind of problem the first existence result has been obtained by K. Kuttler and M. Shillor [1] in the case of a punctual obstacle at $x=L$ i.e. $g_{1}(x)=-\infty$ and $g_{2}(x)=+\infty$ for all $x \in[0, L)$ and $-\infty<g_{1}(L)<0<g_{2}(L)<+\infty$ (see also [4] for the more complex geometrical setting of two beams in contact across a joint with clearance). For a longitudinal obstacle with a smooth shape located under the beam (i.e. $g_{2}(x)=+\infty$ for all $x \in[0, L]$ and $g_{1} \in C^{0}\left([0, L] ; \mathbb{R}^{-}\right)$with $\left.g_{1}(0)<0\right)$ another existence result is proposed by J. Ahn and D. Stewart in [5,6]. These results rely on the construction of approximate solutions either by using a normal compliance technique [1,6] or a time-discretization of the variational inequality [5]. The general case (i.e. any mappings g_{1}, g_{2}) is considered in [2] where fully discretized approximate problems are built, based on the method of lines, by combining a classical space discretization with a time-stepping algorithm for rigid bodies dynamics with unilateral constraints. Indeed, for any finite dimensional subspace V_{h} of V, the Galerkin approximation of (P) leads to

$$
\left(P_{h}\right)\left\{\begin{aligned}
\text { Find } & u_{h} \in L^{2}\left(0, T ; K_{h}\right) \text { such that } u_{h, t} \in L^{2}(0, T ; H), u_{h}(\cdot, 0)=u_{h 0} \text { and } \\
& \quad-\int_{0}^{T} \int_{0}^{L} u_{h, t}(x, t)\left(w_{h, t}(x, t)-u_{h, t}(x, t)\right) d x d t+k^{2} \int_{0}^{T} \int_{0}^{L} u_{h, x x}(x, t)\left(w_{h, x x}(x, t)-u_{h, x x}(x, t)\right) d x d t \\
\geq & \int_{0}^{L} v_{h 0}(x)\left(w_{h}(x, 0)-u_{h 0}(x)\right) d x+\int_{0}^{T} \int_{0}^{L} f(x, t)\left(w_{h}(x, t)-u_{h}(x, t)\right) d x d t
\end{aligned} \quad \begin{array}{l}
\forall w_{h} \in L^{2}\left(0, T ; K_{h}\right) \text { such that } w_{h, t} \in L^{2}(0, T ; H) \text { and } w_{h}(\cdot, T)=u_{h}(\cdot, T)
\end{array}\right.
$$

where K_{h} is a subset of V_{h} allowing to take into account the non-penetrability condition of the beam into the obstacles (see $[2,3]$ or Section 2 for the detailed definition of K_{h}) and $u_{h 0}$ and $v_{h 0}$ are an approximation of u_{0} and v_{0} in V_{h} respectively. If

$$
V_{h}=\operatorname{Span}\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{J_{h}}\right\} \subset V, \quad J_{h}=\operatorname{Dim}\left(V_{h}\right)
$$

we can define

$$
\mathcal{K}_{h}=\left\{\bar{w}_{h} \in \mathbb{R}^{J_{h}}: w_{h}=\sum_{j=1}^{J_{h}} \bar{w}_{h}^{j} \varphi_{j} \in K_{h}\right\} .
$$

https://daneshyari.com/en/article/837156

Download Persian Version:

https://daneshyari.com/article/837156

Daneshyari.com

[^0]: * Corresponding author at: Université Jean Monnet, 23 rue Paul Michelon, 42023 Saint-Etienne Cedex 02, France. Tel.: +33 0477485112 ; fax: +33 04 77485153.

 E-mail addresses: yves.dumont@cirad.fr (Y. Dumont), laetitia.paoli@univ-st-etienne.fr (L. Paoli).

