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a b s t r a c t

A unilateral contact problem between elastic bodies at small strains glued by a brittle ad-
hesive is addressed in the quasistatic rate-independent setting. The delamination process
is modeled as governed by stresses rather than by energies. This leads to a specific scal-
ing of an approximating elastic adhesive contact problem, discretized by a semi-implicit
scheme and regularized by a BV-type gradient term. An analytical zero-dimensional exam-
ple motivates the model and a specific local-solution concept. Two-dimensional numerical
simulations performed on an engineering benchmark problem of debonding a fiber in an
elastic matrix further illustrate the validity of the model, convergence, and algorithmical
efficiency even for very rigid adhesives with high elastic moduli.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fracturemechanics andmathematical theory of rate-independent processes have achieved considerable progress during
the past decades. A number of models have been developed in engineering and in mathematics accounting for different
features of the materials. Even more, particular models admit various concepts of solutions which, in combination with
the specific model, can describe certain specific aspects of the process under consideration. However, it is well recognized
that solutions to rate-independent systems governed by non-convex potentials, as it is the case in fracture models, may
exhibit sudden jumps, i.e., sudden rupture. Various concepts of weak solutions – in this rate-independent case also called
local solutions – have been devised, ranging from energetic solutions, which conserve energy, to approximable, vanishing-
viscosity, BV-, ε-sliding, ormaximally-dissipative solutions, cf. in particular [1–7]. Let us emphasize that the adjective ‘‘local’’
does not refer to local existence in time — just opposite, the local solutions here will always exist globally in time and in
qualified cases will coincide with conventional weak solutions. Independently of [7], local solutions have been invented
also in [8] under the name ‘‘maximally-dissipative minimizers’’. In convex situations, all these concepts essentially coincide
with each other but in general nonconvex situations they are very different. This is related with the conceptual question
whether rather energy or rather stress governs the inelastic process in question and it also has to do with the issue of global
versus local minimization, cf. the discussion in mathematical literature [9,8] and in engineering [10], and also the examples
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[11, Sect. 9], [12, Sect. 6], or [13, Example 7.1]. In particular, energetic solutions, which form a sub-class of the local solutions,
are known to exhibit a tendency to early jumps that may not be physically meaningful. Therefore, in this article, we will
focus to another type of local solutions.

We will restrict the fracture process to a prescribed interface, and thus focus ourselves on a so-called delamination
problem, called also an adhesive contact problem, cf. [14,15] for a survey of various models. In this context, it was already
observed in [16] that the local solutions obtained by semi-implicit time discretization nicely coincide numerically with the
vanishing-viscosity solutions in all investigated examples; of course, energy conservation is lost for such local but non-
energetic solutions. Mathematical justification of such, essentially, stress-driven evolution has been scrutinized in [5] for the
setting of delamination with adhesive contact, where it reveals a certain connection with the maximal-dissipation principle,
and then numerically in [17], for a slightly more general adhesive model. One of the motivations for the stress-driven local
solutions is to avoid the undesired delamination due to big stored energy in a large bulk even under small stress — also
called a ‘‘long-bar paradox’’ in [2], cf. also [5,6].

In view of their good performance in the setting of adhesive contact, cf. [17,16], it is the aim of this paper to establish the
notion of stress-driven local solutions also for the setting of brittle delamination. For this, we will valorize the method of an
adhesive contact approximation of brittle delamination studied in [18] in the context of energetic solutions. More specifically,
in this paper we address a delamination problem of two elastic bodies at small strains glued along a contact boundary ΓC by
a brittle adhesive with a prescribed fracture toughness. The interface ΓC separates the body located in the domain Ω ⊂ Rd,
with 2 ≤ d ∈ N, into two parts, Ω− and Ω+. In the spirit of Generalized Standard Materials, in particular Frémond’s
concept of adhesion [19], the degradation state of the adhesive during the time span [0, T ] is captured by an additional
internal variable z : [0, T ] × ΓC → [0, 1], where z(t, x) = 1 stands for the fully intact state, whereas z(t, x) = 0 models
complete rupture (=debonding) of the adhesive in the material point x ∈ ΓC at time t ∈ [0, T ]. This approach essentially
admits arbitrarily shaped (d−1)-dimensional crack area evolving along the interface ΓC. Moreover it allows to display both
adhesive contact and brittle delamination in a unified way: The brittle delamination model describes the crack growth in a
brittle adhesive. Expressed in terms of the displacement field u : [0, T ] × (Ω \ ΓC) → Rd and the delamination variable
z : [0, T ] × ΓC → [0, 1], the assumption is that the displacements cannot jump on supp z(t) ⊂ Γ C, the spatial support of
z at time t , while on the crack set ΓC \ supp z(t) they may jump. This so-called brittle constraint can be expressed with the
aid of the indicator function

J∞([[u]], z) :=


0 if

[[u]] = 0 in x ∈ supp z,
∞ otherwise. (1.1)

In the adhesive contact model, due to the more viscous properties of the adhesive, the two parts of the body can be slightly
detached from each other without the adhesive degradation. In other words, here, the displacements u are allowed to jump
on supp z at a current time, but the jump is penalized by the adhesive contact term

Jk([[u]], z) =
k
2
z
[[u]]2. (1.2)

Thus, (1.2) can be used to relax the non-convex and nonsmooth constraint (1.1). The contact between the two components
of the body will be considered unilateral but frictionless, which is encoded in the non-penetration condition

IC(x, [[u]]) :=


0 if [[u]] · n(x) ≥ 0,
∞ otherwise, (1.3)

where n(x) denotes the unit normal vector pointing from Ω− to Ω+ at x ∈ ΓC. Any rate effects, such as viscosity, inertia or
temperature dependence, are neglected and the problem is thus completely rate-independent. The time-continuous brittle
problem, involving (1.1), will be approximated by adhesive contact problems, involving (1.2) with k → ∞, and discretized
in time by a semi-implicit scheme scaled in such a way that stress-driven nucleation of the crackwill be correctly modeled in
the limit. As a side effect, an efficient robust numerical strategywill be devised. The convergence proofwill require a BV-type
gradient regularizing termscaled to zero in the limitmodel. However, by compactness, the BV-property of the approximating
solutions is passed on to the (approximable) solutions of the limit model. It can be understood in a similar way that also the
information on the stress-driven nature of the delamination process is handed down from the approximating time-discrete
adhesive problems to the time-continuous brittle limit.

The scaling used here in the context of stress-driven local solutions, cf. (2.11) and (3.1c) below, differs significantly from
the scaling applied in [18] for the setting of energetic solutions. At first glance, the new scaling looks rather surprising
because asymptotically the fracture toughness tends to 0, and thus, the dissipated energy due to delamination vanishes.
But this scaling has already been investigated numerically in engineering literature for static problems close to the onset
of rupture, cf. [20, Formula (16)] or [21, Formula (7)]. It is recognized that this scaling has the capacity to predict correctly
crack nucleations. On the other hand, due to the typical stress concentration on the crack tips of already existing cracks,
this scaling usually leads to the effect of too easily propagating cracks (i.e. propagating already under small driving stress
and nearly not dissipating any energy) and therefore this simple model must be combined with some plasticity mechanism
(usually called a ductile fracture, cf. e.g. [22–25]), which is however far beyond of the scope of this paper.

The plan of the paper is the following: In Section 2, we introduce the problem, the notion of local solution, and motivate
the new scaling for the adhesive models towards the brittle limit on a simple explicit example. Then, in Section 3, we
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