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1. Introduction

In this paper, we consider the following Cauchy problem of n-dimensional incompressible generalized Navier-Stokes
(GNS) equations on the half-space ]R"j] =R" x (0,00), n> 3:

U+ (=2)u+ @u-V)u+VP =0 in(xt) e R, (1.1)
divu=0 in(x,t) € R}, (12)
u(x, 0) = up(x) inx e R", (1.3)
with 8 € (1, 1], whereu = u(x, t) = W' (x, t), ..., u"(x, t)) and P = P(x, t) stand for, respectively, the fluid velocity and

the pressure. The fractional Laplace operator (—A)# with respect to space variable x is a Riesz potential operator defined as
usual through Fourier transform as & ((—A)?f)(&) = |22 Ff(€), where Ff(§) = f(§) = ﬁ Jen € f(X)dx. ug is the
initial velocity satisfying that div ug = 0.

It is well known that by the Duhamel principle, the solution of Cauchy problem (1.1)-(1.3) can be reduced to finding a
solution u of the following integral equations:

t
u(t) = ety — / e ey L (4 @ u)(r)dr. (1.4)
0
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Here, e™* =2 denotes the linear semigroup operator and
e ) = 7N 1 f(x).

P :=I 4+ V(—A)~'div is the Helmholtz-Weyl projection operator which has the matrix symbol with components
B = 8 — &&ulEI > withj k=1,2,....n,

where Jj is Kronecker symbol, and ® denotes tensor product. We notice that the solution of (1.4) is called mild solution.
We also notice that system (1.1)-(1.3) has the so-called scaling invariance property. More exactly, if (u(x, t), P(x, t)) is a
solution to system (1.1)-(1.3) with initial data ug(x), then so is (u;, P,) for all A > 0 with initial data A%#~'ug(1x), where

U (x, t) = AP Tu(x, A%%6) and P (x, t) = A% 72P(x, A%Pt).

This scaling invariance is particularly significant for the system and leads to the following definition. A function space is
critical for system (1.1)-(1.3) if it is invariant under the scaling f; (x) := A*#~1f (Ax).

System (1.1)-(1.3) is a generalization of the usual incompressible Navier-Stokes (NS) equations by replacing the Laplace
operator — A in the NS equations by a general fractional Laplace operator (—A)# (see Wu [1-4]). In the case when 8 = 1, the
seminal paper of Leray [5] proved the global existence of finite energy weak solutions to (1.1)-(1.3), but its regularity and
uniqueness still remain open. The theory of mild solutions to the NS equations is pioneered by Fujita and Kato [6,7], and these
works inspired extensive study in the following years on the well-posedness of the NS equations in various critical spaces,
see Kato [8], Cannone [9], Koch and Tataru [10], Lemarié-Rieusset [11] and so on. Particularly, Koch and Tataru established
the well-posedness for the NS equations with initial data in BMO~'(R"). Recently, Xiao in [ 12,13] generalized the results of
Koch and Tataru to a new space Qaf;O(IR”) for o € [0, 1). For the spatial regularity on the mild solution to the NS equations
has been studied by many authors, such as Giga and Sawada [14], Sawada [15] and Miura and Sawada [16]. In paper [17],
Germain, Pavlovi¢ and Staffilani had proved Koch-Tataru’s solution u satisfies the following spatial regularity property:

t2V™u e Xp+ forallm € N,

where X7+ is Koch-Tataru’s solution existence space. In [ 18], the authors generalized Germain-Pavlovi¢-Staffilani’s results,
and obtained that for sufficient small enough uy € BMO~!, the global-in-time Koch-Tataru solution satisfies

t2 VM

- - < Cllu —1(1+ ||u —1) forallm e N.
et i, S CTollauo (14 Nollawo-)

As to the space-time regularity of the mild solutions to the NS equations, when ug € L"(R"), in[19], Dong and Du established
the result

) £ 3 +kgleymy

where T* is the maximum existence time. Vary recently, inspired by the results of [19,17], Du in [20] proved that Koch-
Tataru’s solution is space-time regularity. More precisely, the author established that there holds

< (C forallk,me N,
L2 (RM % (0,T*))

t%*"at"vmu € X+ forallk,m € N,

with the initial data uy € BMO~!. On the other hand, with suitable regularities for the solution u to the NS equations,
Chemin [21,22] proved that the existence and uniqueness of the trajectory to u, moreover, this trajectory is Hélder contin-
uous with respect to the space variables.

For the general case (1.1)-(1.3), Lions [23] proved that in three space dimensional case, the GNS equations (1.1)-(1.3)
possess global classical solutions when 8 > % Wu [1] obtained a similar result for 8 > % + % in n dimensional case. For the
important case 8 < % + %, Wau [2,3] established the local existence and uniqueness results of (1.1)-(1.3) in Besov spaces. Yu

and Zhai [24] studied the well-posedness of (1.1)—(1.3) in the largest critical Besov spaces B;f,zo@_l) (R™) with 8 € (%, 1). Liu,
Zhao and Cui [25] obtained the global existence and stability of mild solutions for system (1.1)-(1.3) with small initial data
ug belonging to the critical pseudomeasure space PM*(R") (witha > n — (28 — 1) a given parameter, and % <B < % ,
where PM%(R") is defined by

PMER") = {f € 8 € Loe®", [ e = es5 supcsal§ " (©)] < o0}
Moreover, they proved that the global-in-time mild solution u is spatial analytic, and there holds for t € R,

_r—a_m
IV™u|lpyr < Ct~ 26 "2 foralla <r <nandm € N.

In recent paper [26], inspired by Koch and Tataru [10] and Xiao [12], Li and Zhai proved the well-posedness of the GNS
equations (1.1)-(1.3) with initial data in the new critical space Qf_;;](R”) =V. (Qf (R™)" with 8 € (3, 1]and « € [0, B),
and they also proved that the mild solution is spatial smooth. Here Qf(R”) is a generalization of Q, (R") studied in Essen
et al. [27], and Xiao [12,13]. For more results on the regularity of mild solutions to (1.1)-(1.3), we refer the readers to Dong
and Li [28], Liu Zhao and Cui [29], Wu [4] and Zhou [30].
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