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a b s t r a c t

To describe the effects of spatial dispersal strategies and heterogeneous environments on
the dynamics of species, we study a logistic model with non-local dispersals for single
species. The aim of this paper is to study the optimization of species survival and the
investigations are carried out from two aspects: optimization of survival chances and
maximization of total population of species. W.l.o.g., assume that the spatial distribution
of resourcesm ∈ L∞(Ω) satisfies

−1 ≤ m(x) ≤ 1 and
1

|Ω|


Ω

m(x)dx ≤ α, α ∈ (−1, 1).

Our main results indicate that m = χE − χΩ\E , where E ⊂ Ω is measurable with
|E|/|Ω| = (1 + α)/2 and χE is the characteristic function of E, is optimal for both the
survival chances and total population of species respectively.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

One of the major problems in mathematical ecology is to understand the effects of spatial dispersal strategies and
heterogeneous environments on the distribution of species. In recent years, non-local dispersal, which describes the
movement of organisms between non-adjacent spatial locations, has attracted more and more attention in ecology. We
refer [1–16] and references therein for more details.

In particular, in [1,13], the authors restrict their attention to logistic models with the simplified non-local operator
Lu = d(ū − u), where the symbol f̄ means the integral average of f , that is, f̄ :=

1
|Ω|


Ω
fdx. See [13] for the derivation and

interpretation of this operator. From the viewpoint of biology, this simplified non-local dispersal operator corresponds to
the case that themovement distance of the species is much larger than the diameter of the habitat. In [1,13], the dynamics of
single species andmultiple speciesmodels in heterogeneous environmentswith this non-local operator has been thoroughly
studied.

Motivated by the work [1,13], the aim in this paper is to further investigate how spatial variation in the environment of
the habitat affects the maintenance and total population of species using the following single species model with non-local
diffusion:

ut = d [ū − u] + u[m(x)− u] inΩ × (0,∞). (1.1)
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In this model, u(t, x) denotes the population densities of the species, d > 0 is the dispersal rate, which measures the total
number of dispersal individuals per unit time, and the functionm(x) represents its intrinsic growth rate.

For convenience, we set up the following assumptions first. Throughout this paper, we always assume that

(A)m(x) ∈ L∞(Ω) and it is non-constant.

Then let α ∈ (−1, 1) and assume that

(A1)−1 ≤ m(x) ≤ 1 and m̄ ≤ α.

From the viewpoint of biology, two problems will be studied in this paper:

(P1) What is the optimal spatial arrangement of the favorable and unfavorable parts of the habitat for species to survive?
(P2) What is the optimal spatial distribution of resources for which the total population of species can be maximized?

These two problems can be rephrased as mathematical questions respectively as follows:

Question 1.1. Among all functions m(x) that satisfy (A) and (A1), which m(x) will yield the largest range of d for which
(1.1) admits a positive steady state?

Question 1.2. Among all functions m(x) that satisfy (A) and (A1), which m(x)will yield the largest

Ω
θdx, where θ denotes the

positive steady state of (1.1) whenever it exists?

Before proceeding with the discussions, we prepare some notations and terminologies.

• Given α ∈ (−1, 1), denote

Mα := {m(x) | m satisfies (A) and (A1)}.

• We say m ∈ Mα is of bang–bang type if there exists a measurable set E ⊂ Ω such that m = χE − χΩ\E , where χE is the
characteristic function of E.

• Denote

Bα := {m(x) | m ∈ Mα, m̄ = α and m is of bang–bang type}.

First, to study Questions 1.1, 1.2, we establish one result concerning the existence of positive solutions to the stationary
problem of (1.1):

d

θ̄ − θ(x)


+ θ(x)[m(x)− θ ] = 0 inΩ. (1.2)

Theorem 1.1. Assume that m(x) satisfies the assumption (A). Define

µ0 = µ0(m) = sup
0≠ψ∈L2(Ω)


Ω


−d(ψ̄ − ψ)2 + m(x)ψ2


dx

Ω
ψ2dx

. (1.3)

Then the problem (1.2)

d(θ̄ − θ)+ θ(m(x)− θ) = 0 inΩ

admits a unique positive solution in L∞(Ω) if and only if µ0 > 0.

We remark that the same conclusion has been established in [1, Lemma 3.1] provided that m(x) ∈ C(Ω̄) using the
upper/lower solutionmethod. However, in Theorem 1.1, we only requirem(x) ∈ L∞(Ω). Since C(Ω̄) is not dense in L∞(Ω),
different method needs to be developed.

Moreover, due to Theorem 1.1, Question 1.1 is equivalent to the following question:

Question 1.1′. Among all functions m(x) that satisfy (A) and (A1), which m(x) will yield the largest µ0(m) defined in (1.3)?

We will study Questions 1.1, 1.1′ separately using different approaches and obtain the following results respectively.

Theorem 1.2. Assume that (A) and (A1) hold. For m ∈ Mα , define

I(m) := {d | d > 0 and for which (1.2) has a positive solution}.

Then if mα ∈ Bα , then for any m ∈ Mα, I(m) ⊂ I(mα). Moreover,

I(mα) =


(0,+∞), 0 ≤ α < 1,
(0,−1/α), −1 < α < 0. (1.4)
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