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h i g h l i g h t s

• We apply a Ricceri-type critical-point theorem to elliptic systems on fractals.
• We emphasize the special structure of the Sierpinski gasket.
• We overcame difficulties arising from the non-smooth structure of fractals.
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a b s t r a c t

The purpose of the paper is to point out that well-established methods to study the multi-
plicity of solutions of nonlinear elliptic problems defined on open sets in Euclidean spaces
can be also used in the case of problems defined on fractals. More exactly, using variational
methods and an abstract critical-point theorem by B. Ricceri, we prove the existence of
three nonzeroweak solutions of certain gradient-type systems defined on a famous fractal,
the Sierpinski gasket. The paper emphasizes the way we overcame the difficulties arising
from the major structural differences between the highly non-smooth Sierpinski gasket
and the open subsets of Euclidean spaces on which gradient-type systems are usually con-
sidered.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The origins of analysis on fractals lie in B.B. Mandelbrot’s book [1] where fractals are proposed as models for different
physical phenomena. Subsequently, the Laplacian on fractals, which first appeared in physics as a tool for investigating
the percolation effect and various transport processes (in classical as well as in quantum mechanics), became the subject
of intensive mathematical research. An overview of these researches can be found, for instance, in the introduction of R.S.
Strichartz’s book [2]. Herewe only point out that defining the Laplacian on a general fractal implies to copewith considerable
difficulties and that, over the years, several definitions have been proposed that are applicable to certain classes of fractals.
For example, in the construction that goes back to J. Kigami (e.g., [3–6]) the Laplacian is defined as the limit of discrete
differences on graphs approximating the fractal, a method that fits with so-called post-critically-finite fractals. Another
approach was taken by U. Mosco (e.g., [7–9]), who introduced a framework for the Laplacian by taking as a starting point a
Dirichlet form that reflects the self-similarities of the underlying fractal. This framework led to the very general theory of
variational fractals.

Once a Laplacian has been defined on a fractal, one begins to study elliptic (linear and nonlinear) problems on it. In the
last twenty years there have beenmany contributions to this area. The papers [10–19] are only a few examples in this sense.
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This paper is devoted to nonlinear elliptic systems on a special fractal set. It is worthy of mention that nonlinear elliptic
systems, defined on (bounded or unbounded) open sets in Rn, have been intensively studied in the last three decades (see,
for instance, the references in [20]). An important class of such systems is represented by those of gradient-type. In this
sense, we point to Chapter 4 of [21] and to the references mentioned there.

Recently, in [22], the study (by means of variational methods) of gradient-type systems defined on fractals has been
initiated. More exactly, using a variational principle that goes back to B. Ricceri (see [23]), the authors prove in [22] the
existence of a sequence of weak solutions for parametric quasilinear gradient-type systems defined on the Sierpinski gasket.
We point out that the Sierpinski gasket is of particular interest in fractal theory since it is a typical example of a post-
critically-finite fractal.

In the present paper, we propose another variational method to prove the existence of multiple (finitely many) weak
solutions of gradient-type systems defined on the Sierpinski gasket: using an abstract four-critical-point theorem stated by
B. Ricceri in [24], we show that certain one-parameter elliptic gradient-type systems defined on the Sierpinski gasket have
at least three nonzeroweak solutions. As far aswe know, this is the first application of a finitelymany-critical-point theorem
of Ricceri type to elliptic systems defined on fractals. The major difficulty we had to cope with is related to a specific feature
of the four-critical-point theorem: one has to show the existence of a function with certain properties which belongs to that
space of real-valued functions defined on the Sierpinski gasket that corresponds to the Sobolev spaces in case of classical
(i.e., open) subsets ofRn. By contrastwith the application of Ricceri’s abstract four-critical-point theorem to elliptic problems
defined on classical subsets of Rn, where this function can be constructed explicitly (e.g., in the proof of Theorem 2 in [24]
this function, denoted by u2, is actually a constant function, and in the proof of Theorem 1.1 in [25] this function, denoted
by uc , is constructed with the aid of the distance function from a point to a certain compact subset of the open, bounded,
and connected subset of Rn where the elliptic problem is considered), in our application of Ricceri’s theorem to the fractal
case we have to involve Urysohn’s Lemma to prove the existence of such a function. Nevertheless, one can give concrete
examples that allow an explicit construction of such functions, using a specific method that characterizes the Sierpinski
gasket (see (1) in Example 4.1).

Understanding and dealing with the phenomena in the case of gradient-type systems on the Sierpinski gasket is the first
step for the study of these systems in the more general setting of post-critically-finite fractals.

2. Preliminaries

Notations. (1) We denote by N the set of natural numbers {0, 1, 2, . . .}, by N∗
:= N \ {0} the set of positive naturals, and

by | · | the Euclidean norm on the spaces Rn, n ∈ N∗. Throughout the paper, the spaces Rn are considered to be endowed
with the Euclidean topology.

(2) If X is a set, Y a nonempty subset of X , and f : X → R a real-valued function, then we will use the notations

inf
Y

f := inf{f (y) | y ∈ Y } and sup
Y

f := sup{f (y) | y ∈ Y }.

(3) If X is a real normed space, then X∗ stands for its dual space.

Our study of gradient-type systems on the Sierpinski gasket is based on the following abstract four-critical-point theorem
by B. Ricceri which is a consequence of a more general result (see Theorem 1 in [24]).

Theorem 2.1. Let X be a reflexive real Banach space, let Φ, Ψ , J: X → R be functionals, let z0, z1 ∈ X, and let ρ > 0 be a real
number such that the following conditions hold:

(i) Φ is a coercive, sequentiallyweakly lower semicontinuous C1-functionalwhose derivative admits a continuous inverse on X∗.
(ii) Ψ and J are C1-functionals with compact derivatives.
(iii) z0 is a strict local minimum of the functional Φ and Φ(z0) = Ψ (z0) = J(z0) = 0.
(iv) The inequalities

max

lim sup
u→z0

J(u)
Φ(u)

, lim sup
∥u∥→∞

J(u)
Φ(u)


≤ 0 (1)

and

max

lim sup
u→z0

Ψ (u)
Φ(u)

, lim sup
∥u∥→∞

Ψ (u)
Φ(u)


< 1 (2)

hold.
(v) 0 < J(z1) = sup(Φ−Ψ )−1(]−∞,ρ]) J < supX J and Φ(z1) ≤ Ψ (z1).

Then there exists λ∗ > 0 such that the functional Φ − λ∗J − Ψ has at least four critical points, z0 being one of them. Moreover,
two of these four critical points (different from z0) are actually global minima of Φ − λ∗J − Ψ .
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