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a b s t r a c t

This paper deals with a free boundary problem modeling tumor growth with inhibitors.
This problem has a unique radially symmetric stationary solution with radius r = Rs. The
tumor aggressiveness is modeled by a positive tumor aggressiveness parameter µ. It is
shown that there exist a positive integerm∗∗

∈ R and a sequence of µm, such that for each
µm(m > m∗∗), symmetry-breaking solutions bifurcate from the radially symmetric sta-
tionary solutions.
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1. Introduction

The mathematical models of tumor growth have been developed and studied since last century, many theoretical and
numerical results are established for various tumor models; see review papers [1–5] and the references therein. Among
those, the growth of solid tumor models, described by partial differential equations with a free boundary, has been given
considerable attention in the past forty years; see [6–18]. Growth of the solid tumor phase can be regarded as a result of
various interactions within the micro-environment, such as nutrient (e.g., oxygen and glucose), inhibitors (e.g., inhibitory
material developed from the immune system of healthy cells, anti-cancer drugs and radiation administered by medical
treatment), etc.

In this paper, the tumor model with the presence of an inhibitor is considered, such presence has implications to assess
the efficacy of certain cancer treatments. For simplicity of exposition, we assume that the nutrient and the inhibitor are
single species; the inhibitor inhibits the cell proliferation but does not play any role in nutrient concentration.We denote the
concentrations of nutrient and inhibitor by σ and β , respectively, and then the distribution of externally supplied nutrient
may be given by the following reaction–diffusion equation (see [6,19,9,20,15]):

∂σ

∂t
= D1∆σ + Γ̂1(σB − σ) − λ1σ in Ω(t), (1.1)

where Ω(t) is the tumor domain at time t with a moving boundary ∂Ω(t), σ denotes the concentration of a nutrient which
diffuses throughout the tumor, with diffusion coefficient D1, the term Γ̂1(σB − σ) accounts for the transfer of nutrient by
means of the vasculature, whose presence stems from angiogenesis, see [19], and the last term on the right side describes
the nutrient uptake by cells. Here Γ̂1 is the transfer rate of nutrient-in-blood-tissue; for the avascular case we have Γ̂1 = 0.
σB is the concentration of nutrient in the vasculature and λ1 is the rate of consumption of nutrient by the tumor cells.
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Assume that the similar effects govern the evolution of the inhibitor in the tumor, and then from [19,21,22], it follows
that:

∂β

∂t
= D2∆β + Γ̂2(βB − β) − λ2β in Ω(t), (1.2)

where βB and Γ̂2 denote the inhibitor concentration in the vasculature and the transfer rate of inhibitor-in-blood-tissue if
the inhibitor is a blood-borne anti-cancer drug, respectively; Γ̂2 = 0 if the inhibitor is secreted by neighboring healthy cells.
In response to the ‘‘foreign’’ body, the inhibitor is delivered by diffusion across the tumor boundary. Using non-dimensional
scales (see [19,9,21]), Eqs. (1.1) and (1.2) can be rewritten as

δ1
∂σ

∂t
= ∆σ − σ in Ω(t), (1.3)

δ2
∂β

∂t
= ∆β − λβ in Ω(t), (1.4)

where δ1, δ2 are small parameters.
We assume that the pressure p within the tumor comes from the proliferation of the tumor cells. We assume that the

density of tumor cells is constant; the proliferation rate of the tumor cell is linearly dependent on the nutrient and the
inhibitor, and then the rate of volume change ∇ · u (u is the cell velocity) is given by conservation of mass

1
µ

∇u = σ − σ̃ − τβ,

where µ is a parameter expressing the ‘‘intensity’’ of the expansion by mitosis, the term σ − σ̃ on the right side is the
proliferation rate, σ̃ is a threshold concentration and the term τβ is the death rate of tumor caused by the inhibitor.
Combining with Darcy’s law, u = −∇p, we get

∆p = −µ(σ − σ̃ − τβ) in Ω(t) (1.5)

and

p = κ on ∂Ω(t)

due to cell-to-cell adhesiveness; see [19]. Furthermore, assuming the continuity of the velocity field through the boundary,
we obtain

∂p
∂n

= −Vn on ∂Ω(t), (1.6)

where Vn is the velocity of the free boundary in the exterior normal direction, and n is the exterior normal vector.
Since tumors grown in vitro have a nearly spherical shape, many papers discuss the radially symmetric tumor models.

Thus, it is important to study the stability of the radially symmetric stationary solutions of the tumor models. In the present
paper,we are interested in the bifurcation of steady-state solutions of the above free boundaryproblem.Namely,we consider
the existence of symmetric-breaking stationary solution of the stationary problem:

∆σ = σ in Ω, (1.7)
∆β = λβ in Ω, (1.8)

∆p = −µ(σ − σ̃ − τβ) in Ω, (1.9)
σ = σ in ∂Ω, (1.10)

β = β on ∂Ω, (1.11)
p = κ on ∂Ω, (1.12)
∂p
∂n

= 0 on ∂Ω, (1.13)

where Ω is a bounded domain in R3, λ, µ, σ̃ , τ , σ , β are positive constants and σ − σ̃ − τβ > 0, κ is the mean curvature.
For the case of the system (1.7)–(1.13) without inhibitors, i.e., β = 0, the authors of [23,20,24] proved the existence of a

unique radially symmetric solution and there exists a sequence of symmetry-breaking stationary solutions for this system in
the two-dimensional case and the three-dimensional case respectively. Numerical simulations were carried out by authors
such as Cristini et al. [9], and Li et al. [25], in certain circumstances a small perturbation of a radially symmetric tumor will
finally evolve into a radially non-symmetric configuration. The asymptotic stability of the stationary solutions was studied
in [12,26,13]. For the case β ≠ 0, the existence of radially symmetric stationary solution and its asymptotical stability
under radially symmetric perturbations were analyzed by Cui and Friedman in [21,22]. In [27], Wu et al. investigated the
asymptotic stability of a radially symmetric stationary solution under radially and non-radially symmetric perturbations;
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