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a b s t r a c t

The integrability of a class of cubic Lotka–Volterra systems ẋ = x(1 − a0x2 − a1xy −

a2y2), ẏ = y(−λ + b0x2 + b1xy + b2y2), is studied. For odd λ satisfying λ ≥ 3, we derive
the necessary and sufficient conditions for the integrabilities of the above systems.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Consider planar vector fields with p : −q resonant singular point

ẋ = px + P(x, y), ẏ = −qy + Q (x, y),

where p, q ∈ N and P,Q are polynomials. The classic center problem by Dulac [1] is to find the conditions for the existence
of a local analytic first integral H(x, y) = xqyp + · · · for the above systems.

For the 1 : −1 resonant case, the above problem is completely solved when P and Q are homogeneous polynomials of
degrees 2 (by Dulac), and 3 (by Sibirskii). For the 1 : −2 resonant case, the above problem is almost certainly solved in [2,3]
when P and Q are homogeneous polynomials of degrees 2. For more results, we recommend the readers the papers [4–6],
etc.

Here we are interested in the Lotka–Volterra type systems

ẋ = x(p + P(x, y)), ẏ = y(−q + Q (x, y)). (1)

The form of L–V systems seems to be simple, but even in the simplest case deg P = degQ = 1, the family of Lotka–Volterra
is sufficiently rich to exhibit most general features that are expected from the general polynomial families: existence of
non-normalizable systems, existence of integrable and nonlinearizable systems, etc.

The integrability of classic L–V systems, i.e. P andQ are homogeneous polynomials of degree 1, has been studied bymany
authors. In [2,7], all the integrable conditions are given for 1 : −n or 2 : −n resonant cases, where n ∈ N. For generic p : −q
resonant cases, some new integrable sufficient conditions are given in [8,9]. For small (p, q) (p + q ≤ 12), in [8] the above
sufficient conditions are shown to be also necessary.

Some authors also consider the integrability of L–V systems with homogeneous polynomials P,Q of degree 2 in
[5,10–12], degree 3 in [13] and degree 4 in [14]. When P and Q are quadratic homogeneous polynomials, system (1) can
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be written as

ẋ = x(1 − a0x2 − a1xy − a2y2) ẏ = y(−λ + b0x2 + b1xy + b2y2), (2)

where λ =
q
p .

The case λ = 3 is studied in [5] where in fact the general homogeneous cubic 1 : −3 resonant case was treated. In [12],
the authors consider the case λ =

3
2 . For λ ∈ N, some sufficient conditions are given in [10,11], and for small odd λ (λ ≤ 9),

the authors of [10,11] obtain necessary and sufficient conditions for the integrabilities of system (2). In their proofs, they
need to use mathematic tools, such as Maple, to calculate the first three saddle quantities of system (2). For small λ, this
can be easily realized by computers, but if λ is very large, for example λ > 10100, then it is difficult for computers even to
factorize λ as the product of prime numbers; of course it is impossible for computers to calculate the saddle quantities. Thus
the methods in [11,10] cannot work.

In this paper, for odd λ, we do not use computers, but use theoretical analysis to obtain the first three saddle quantities of
system (2). In fact, the saddle quantities of system (2) that we obtain are the same as that in [10,11], but our method works
not only for small λ, but also for all the odd λ. Concretely, our result is as follows:

Theorem 1. For odd λ satisfying λ ≥ 3, system (2) is integrable if and only if one of the following conditions is satisfied:

(a)
(λ−5)/2

i=0

(b0 − (2i + 1)a0) = 0;

(b) f1 = 0, b0 = (λ − 2)a0;

(c) f1 = 0, a1 = 0,
(λ−3)/2

i=0

(b0 − 2ia0) = 0;

(d) f1 = 0, f2 = 0,

where

f1 = λa0a1 + a1b0 + (λ − 2)a0b1 − b0b1;

f2 = λa0a2 + (λ − 1)a0b2 − b0b2.

Of course, the condition (a) here exists only for λ ≥ 5.
Unfortunately, when λ is even, the saddle quantities of system (2) will be much more complicated, so Lemma 3 in this

paper is not right, and hence our method does not work.

2. The sufficient conditions

For λ ∈ N, all the sufficient conditions here have been obtained in [11,10]; here we will extend their results to the case
λ ∈ Q+. Since our proof is almost the same as their, we only give the outline of the proof.

Lemma 2. If λ ∈ Q+, then system (2) is integrable if one of the following conditions is satisfied:

(a)


0≤i≤(λ−5)/2

(b0 − (2i + 1)a0) = 0;

(b) f1 = 0, b0 = (λ − 2)a0;

(c) f1 = 0, a1 = 0,
(λ−3)/2

i=0

(b0 − 2ia0) = 0;

(d) f1 = 0, f2 = 0.

Proof. The conditions (a)–(c) are equivalent to the following three conditions

b0 = (2m + 1)a0, 0 ≤ m ≤
q − 5
2

;

a1 = 0, b0 = (λ − 2)a0;

a1 = b1 = 0, b0 = 2ma0, 0 ≤ m ≤
q − 3
2

,
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