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a b s t r a c t

We consider two-dimensional nonstationary Navier–Stokes shear flow with multivalued
and nonmonotone boundary conditions on a part of the boundary of the flow domain.
We prove the existence of global in time solutions of the considered problem which is
governed by a partial differential inclusion with a multivalued term in the form of Clarke
subdifferential. Then we prove the existence of a trajectory attractor and a weak global
attractor for the associated multivalued semiflow.

This research is motivated by control problems for fluid flows in domains with
semipermeable walls and membranes.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we consider two-dimensional nonstationary incompressible Navier–Stokes shear flows with nonmonotone
boundary conditions on a part of the boundary of the flow domain. Our aim is to prove the existence of global in time
solutions of the considered problemwhich is governed by a partial differential inclusion, and then to prove the existence of
a trajectory attractor and a weak global attractor for the associated multivalued semiflow.

This research is motivated by control problems for fluid flows in domains with semipermeable walls and membranes.
The problem we consider is as follows. The flow of an incompressible fluid in a two-dimensional domainΩ is described

by the equation of motion

ut − ν∆u + (u · ∇)u + ∇p = 0 for (x, t) ∈ Ω × R+, (1.1)

where the viscosity coefficient ν > 0, and the incompressibility condition

div u = 0 for (x, t) ∈ Ω × R+. (1.2)

To define the domainΩ of the flow let us consider the channel

Ω∞ = {x = (x1, x2) : −∞ < x1 < ∞, 0 < x2 < h(x1)},
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Fig. 1. Schematical view ofΩ .

where the function h : R → R is a positive, smooth, and L-periodic. Then we set

Ω = {x = (x1, x2) : 0 < x1 < L, 0 < x2 < h(x1)}

and ∂Ω = Γ̄0 ∪ Γ̄L ∪ Γ̄1, where Γ0 and Γ1 are the bottom and the top, and ΓL is the lateral part of the boundary ofΩ . The
domainΩ is schematically presented in Fig. 1.

We are interested in solutions of (1.1)–(1.2) inΩ × R+ which are L-periodic with respect to x1. We assume that

u = 0 at Γ1 × R+. (1.3)

On the bottom Γ0 we impose the following conditions. The tangential component uT of the velocity vector on Γ0 is given,
namely, for some s ∈ R,

uT = u − uNn = (s, 0) at Γ0 × R+, where uN = u · n. (1.4)

Furthermore, we assume the following subdifferential boundary condition

p̃(x, t) ∈ ∂ j(uN(x, t)) at Γ0 × R+, (1.5)

where p̃ = p+
1
2 |u|

2 is the total pressure (called the Bernoulli pressure), j : R → R is a given locally Lipschitz superpotential,
and ∂ j is a Clarke subdifferential of j. For a locally Lipschitz function j : R → R its Clarke subdifferential ∂ j : R → 2R is
defined as

∂ j(s) = conv{ lim
n→∞

j′(sn) : sn → s, sn ∉ S ∪ Nj, j′(sn) converges},

where Nj is the null measure set on which j fails to be differentiable and S is any null measure set. Moreover the generalized
directional derivative in the sense of Clarke of the function j at the point u in the direction r is defined as j0(u; r) =

maxξ∈∂ j(u) ξ r (see for example [1,2] for the properties of Clarke subdifferential).
Let, moreover,

u(0) = u0 inΩ. (1.6)

The considered problem is motivated by the examination of a certain two-dimensional flow in an infinite (rectified) journal
bearing Ω × (−∞,+∞), where Γ1 × (−∞,+∞) represents the outer cylinder, and Γ0 × (−∞,+∞) represents the
inner, rotating cylinder. In the lubrication problems the gap h between cylinders is never constant. We can assume that the
rectification does not change the equations as the gap between cylinders is very small with respect to their radii.

A physical interpretation of the boundary condition (1.5) can be as follows. The superpotential j in our control problem
is not convex as it corresponds to the nonmonotone relation between the normal velocity uN and the total pressure p̃ at Γ0.
Assuming that, left uncontrolled, the total pressure at Γ0 would increase with the increase of the normal velocity of the fluid
at Γ0, we control p̃ by a hydraulic device which opens wider the boundary orifices at Γ0 when uN attains a certain value and
thus p̃ drops at this value of uN . Particular examples of such relations are provided in [3,4].

The knowledge or the judicious choice of the boundary conditions on the fluid–solid interface is of particular interest in
lubrication area which is concernedwith thin film flow behaviour. The boundary conditions to be employed are determined
by numerous physical parameters characterizing, for example, surface roughness and rheological properties of the fluid.

The system of Eqs. (1.1)–(1.2) with non-slip boundary conditions: (1.3) at Γ1 for h = const and u = const on Γ0 (instead
of (1.4)–(1.5) on Γ0) was intensively studied in several contexts, some of them mentioned in the introduction of [5]. The
autonomous case with h ≠ const and with u = const on Γ0 was considered in [6,7] and the nonautonomous case h ≠ const ,
u = U(t)e1 onΓ0 was considered in [8]. Existence of exponential attractors for the Navier–Stokes fluids and global attractors
for Bingham fluids, with the Tresca boundary condition on Γ0 was proved in [9,10], respectively. Recently, attractors for
two dimensional Navier–Stokes flows with Dirichlet boundary conditions were studied in [11], where the time continuous
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