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a b s t r a c t

We consider a simple model for the fluid flow in a porous medium. The model consists of
a hyperbolic system of balance laws, which take into account phase changes and allow for
metastable states thanks to the introduction of an equilibrium pressure. A damping term is
included aswell, which depend not only on the velocity but also on the phase of the fluid; in
particular, it vanishes in the vapor phase. The existence and uniqueness of traveling waves
is proved in several important cases.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we consider a model for the isothermal and inviscid fluid flow through a porous medium, in presence of
liquid–vapor phase changes. The system of evolution equations governing such flows in Lagrangian coordinates is

vt − ux = 0,
ut + p(v, λ)x = −α(λ)u,

λt =
1
τ

(p(v, λ) − pe) λ(λ − 1),
(1.1)

for t > 0 and x ∈ R. Here above, v > 0 denotes the specific volume, u the velocity and λ ∈ [0, 1] the mass–density fraction
of the vapor in the fluid. The pressure function p(v, λ) > 0 is assumed to be of class C2 and satisfies

pv < 0, pλ > 0, pvv > 0, pvλ < 0. (1.2)

We observe that by (1.2) it easily follows that limv→+∞ pv(v, λ) = 0. Physical pressure functions satisfy, in addition to (1.2),
also

lim
v→0+

p(v, λ) = +∞, lim
v→+∞

p(v, λ) = 0, (1.3)

for every λ ∈ [0, 1]. In turn, the first condition implies limv→0+ pv(v, λ) = −∞. The pressure function p = (κ0 + λ(κ1 −

κ0))v
−γ satisfies both (1.2) and (1.3) for γ ≥ 1 and κ0 < κ1. The pressure law ps = pe + c2{1/v − [λ/vg + (1 − λ)/vl]},

where vg > vl are reference values for the specific volumes of gas and liquid, can be deduced by the stiffened gas model; it
satisfies the conditions in (1.2) apart from the last one: (ps)vλ ≡ 0. We always assume (1.2) while the further assumption
(1.3) is only required is some special cases.
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The assumption pv < 0 in (1.2) implies that (1.1) is a hyperbolic system of balance laws with eigenvalues ±
√

−pv and
0. Above, we denoted by pe > 0 a (constant) equilibrium pressure and by τ > 0 a characteristic reaction time.

The flow is hosted in a medium that induces a friction force −αu proportional to the linear momentum, with α ≥ 0. In
general, the friction coefficient α depends on the porosity of the material: the higher the porosity, the lower is α, since then
it is easier for the fluid to flow through. Moreover, α also depends on the fluid and in particular on the phase of the fluid:
the medium resists the flow of vapor much less than it does to the flow of liquid. In this paper, we assume for simplicity
that the material is uniform, so that α is independent of the porosity, but allow α to depend on λ. This framework includes
the interesting case when α is strictly positive in the liquid phase and vanishes in the vapor phase. For different approaches
to liquid/vapor flows in porous media we quote the Baer–Nunziato model proposed in [1] and the Stefan-like model in [2].
Both models retain more physical information on the phenomenon than ours but can be fully treated only in a numerical
way. Our model is much simpler but allow for a much more detailed mathematical analysis.

We now briefly discuss some known results on (1.1). If the third equation is missing and then p only depends on v,
the related system has been studied by many authors, see for instance [3–7]. If both source terms are missing in (1.1), the
resulting homogeneous system has been studied in [8,9]; see also [10] for a large data analysis. About the complete system
(1.1), the case α ≡ 0 has been considered in [11] with a special emphasis to relaxation approximation (see also [12] for the
limit case τ = ∞); the study of the traveling waves was done in [13]. The case when α is a positive constant was studied
in [14]; entirely analogous results are valid if α depends on λ but is bounded away from zero [15]. Moreover, in [15] we
proved that, under such an assumption, system (1.1) satisfies the Shizuta–Kawashima condition and is strictly entropy-
dissipative; as a consequence [16], the initial-value problem has smooth global solutions if the initial data are close to the
stable-liquid phase (λ = 0 and p > pe) or to the stable-vapor phase (λ = 1 and p < pe).

In this paper we investigate the existence of traveling waves for system (1.1) in the case α(λ) is allowed to vanish: more
precisely, we assume that α is smooth and satisfies

α(λ) > 0 if λ ∈ [0, 1), α(1) = 0. (1.4)

In other words, the friction is deemed to be negligible when the fluid is in the vapor phase. In Section 2 we introduce the
dynamical system we shall be dealing with and give a description of the main results. Detailed statements and proofs are
provided in Sections 4–6, because system (1.1) shows up a so large variety of different traveling waves that it would be
cumbersome to summarize all of them in a single statement. Section 3 contains some preliminary results and Section 7
investigates the uniqueness of constant solutions. We collect and comment all the results we obtained in a pictorial point
of view in the final Section 8.

2. The dynamical system and an overview of the main results

We denote U = (v, u, λ) and Ω = (0, +∞) × R × [0, 1]. A traveling wave to (1.1) with constant speed c is a solution
to (1.1) of the form

U(ξ) = U

x − ct

τ


,

satisfying−cv′
− u′

= 0,
−cu′

+ p′
= −A(λ)u,

−cλ′
= (p − pe)λ(λ − 1),

(2.1)

together with
(v, u, λ)(±∞) = (v±, u±, λ±),
(v′, u′, λ′)(±∞) = 0, (2.2)

for (v±, u±, λ±) ∈ Ω . Here above, ‘‘′’’ denotes differentiation with respect to ξ , p′
= pvv

′
+ pλλ

′ and

A(λ) = α(λ)τ .

The end states (v±, u±, λ±) in the first line of (2.2) must be equilibrium points of (2.1) because of the second line in (2.2);
the equilibrium set of (2.1) is

E = {(v, 0, λ) ∈ Ω: (p − pe)λ = 0} ∪ {(v, u, 1) ∈ Ω} = E0 ∪ E1. (2.3)

The case when the end states belong to E0 ∪ {E1 ∩ {u = 0}} is contained in [14,15]. Then, we focus on the case that

exactly one of the end states belongs to E1 ∩ {u ≠ 0}. (2.4)

If a solution to (2.1)–(2.2) exists, we say that U− = (v−, u−, λ−) → (v+, u+, λ+) = U+ is a connection with speed c . We
focus our analysis on the case

c > 0. (2.5)
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