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a b s t r a c t

We prove the existence of solutions of a cross-diffusion parabolic population problem.
The system of partial differential equations is deduced as the limit equations satisfied
by the densities corresponding to an interacting particles system modeled by stochastic
differential equations. According to the values of the diffusion parameters related to the
intra and inter-population repulsion intensities, the system may be classified in terms of
an associated matrix. For proving the existence of solutions when the matrix is positive
definite, we use a fully discrete finite element approximation in a general functional
setting. If the matrix is only positive semi-definite, we use a regularization technique
based on a related cross-diffusion model under more restrictive functional assumptions.
We provide some numerical experiments demonstrating the weak and strong segregation
effects corresponding to both types of matrices.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The effects of spatial cross-diffusion on interacting population models have been widely studied since Kerner [1] and
Jorné [2] examined the linear cross-diffusion model

∂tui − ai1∆u1 − ai2∆u2 = (−1)i+1ui(αi − βiuj),

with non-negative self-diffusivities aii, and non-zero cross-diffusivities aij, for i, j = 1, 2, i ≠ j, and demonstrated that
while self-diffusion tends to damp out all spatial variations in the Lotka–Volterra system, cross-diffusion may give rise to
instabilities [3] and to non-constant stationary solutions.

First nonlinear cross-diffusion models seem to have been introduced by Busenberg and Travis [4] (see also Gurtin and
Pipkin [5] for a related model), and Shigesada et al. [6] from different modeling points of view. Shigesada et al. approach
starts with the assumption of a single population density evolution determined by a continuity equation

∂tu − divJ(u) = u(α − βu), with J(u) = ∇((c + au)u) + bu∇Φ. (1)

The divergence of the flow J is thus decomposed into three terms: a random dispersal, c∆u, a dispersal caused by population
pressure, a∆u2, and a drift directed to theminima of the environmental potentialΦ . Generalizing this scalar equation to two
populations they propose the system, for i = 1, 2,

∂tui − divJi(u1, u2) = fi(u1, u2),
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with

Ji(u1, u2) = ∇ ((ci + ai1u1 + ai2u2)ui) + biui∇Φ, (2)

and fi of the competitive Lotka–Volterra type. Disregarding the linear dispersals (c = ci = 0) representing a random
contribution to the motion, the nonlinear part of the flow J in Eq. (1) may be expressed in the conservative form as
J(u) = uJ̃(u), with J̃ given by the potential J̃(u) = ∇(2au + bΦ). However, rewriting the flows (2) in a similar way leads to
the more intricate expression

J̃i(u1, u2) =


2aii + aij

uj

ui


∇ui + aij∇uj + bi∇Φ,

which, in general, cannot be deduced from a potential. This fact has been one of the main difficulties in finding appropriate
conditions ensuring the existence of solutions to the model proposed by Shigesada et al. (SKT model, from now on), see
[7–16] and their references.

The generalization of the flow in (1) to several populations (with c = b = 0) given by Busenberg and Travis [4] is
perhaps more natural from the modeling point of view. They assume that the individual population flow Ji is proportional
to the gradient of a potential function, Ψ , that only depends on the total population density U = u1 + u2,

Ji(u1, u2) = a
ui

U
∇Ψ (U).

Note that in this way the flow of U is still given in the form (1), with J(U) = a∇Ψ (U) (and c = b = 0). Assuming the power
law Ψ (s) = s2/2, we obtain individual population flows given by

Ji(u1, u2) = aui∇U, (3)

as those introduced by Gurtin and Pipkin [5] and mathematically analyzed by Bertsch et al. [17,18].
In this articlewepropose a generalization of theBusenberg–Gurtinmodel consisting of the assumption that the individual

flows Ji depend, instead of on the total population density u1 + u2, on a general linear combination of both population
densities, possibly different for each population. As remarked in [5], these weighted sums are motivated when considering
a set of species with different characteristics, such as size, behavior with respect to overcrowding, etc. In addition, we also
assume that the flows may contain environmental and random effects, which altogether lead to the following form

Ji(u1, u2) = ui∇(ai1u1 + ai2u2 + biΦ) + ci∇ui,

which (for ci = 0) has a conservative form similar to that of the scalar case. We shall refer to this model as the BT model.
Let us finally remark that cross-diffusion parabolic systems have been used to model a variety of phenomena ranging

from ecology [19–21,16,22–24], to semiconductor theory [25,26], granular materials [27–29] or turbulent transport in
plasmas [30], among others. Apart from the global existence and regularity results for the evolution problem, construction
of traveling wave solutions [31] or exact solutions [32] has been accomplished. For the steady state problem, the existence
of non constant steady state solutions has been proven in [33,10]. Other interesting properties, such as pattern formation,
has been studied in [34–38]. Finally, the numerical discretization has received much attention, and several schemes have
been proposed [11,12,14,39–41].

The article is organized as follows. In Section 2, for a better physical understanding of our model, we sketch a heuristic
deduction based on stochastic dynamics of particle systems. In Section 3 we give the precise assumptions on the data
problem and state the main results. In Section 4, we introduce the approximated problems and perform some numerical
experiments showing the behavior of solutions under several choices of the parameters, including a comparison between
the SKT and the BT models. In Section 5, we prove the theorems stated in Section 3, finally, in Section 6 we present our
conclusions.

2. Mathematical modeling

In recent years there has been a trend to the rigorous deduction of Eq. (1) as the equation satisfied by the limit density
distribution of suitable particle stochastic systems of differential equations, see [42–45] and their references. We sketch
here the formulation and the main ideas contained in these works which allow us to deduce our model.

Consider a system of N = N1 + N2 interacting particles of two different types described by their trajectories X i
ji

: R+ →

Rm, ji = 1, . . . ,Ni, i = 1, 2 (stochastic processes). We take N1 = N2 = n to simplify the notation. The Lagrangian approach
to the description of the system is based on specifying suitable interacting laws among particles in such a way that their
trajectories are determined by solving the following stochastic system of ordinary differential equations (SDE)

dX i
j (t) = F i

j (X
1
1 (t), . . . , X1

n (t), X2
1 (t), . . . , X2

n (t))dt + σ i
ndW

i
j (t), (4)

together with some initialization of the processes X i
j (0) = X i

j0, j = 1, . . . , n, i = 1, 2. Functions F i
j : R2n

→ Rm describe
deterministic interactions among particles while the constants σ i

N are the intensities of random dispersal, due to a variety of
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