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We present an exact solution of the nonlinear governing equations for geophysical water
waves in the β-plane approximation near the equator.
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1. Introduction

Recently, some exact solutions describing nonlinear equatorial flows in the Lagrangian framework were obtained. In
Constantin [1] equatorially trapped wind waves were presented—see also the discussion in Constantin & Germain [2], and
Henry [3] showed that one can also include a uniform underlying current. In Constantin [4] internal waves describing
the oscillation of the thermocline as a density interface separating two layers of constant density, with the lower layer
motionless, were presented. Our aim is to extend the solution in Constantin [4] to include an underlying uniform current.
The presence of strong currents in the Equatorial Pacific is well-documented, cf. Philander [5]. The present extension of the
flow in Constantin [4], while showing that one can accommodate an underlying current, differs from the flow presented
recently in Constantin [6].

2. Preliminaries

The Earth is taken to be a sphere of radius, R = 6371 km, rotating with constant rotational speedΩ = 7.29 ·10−5 rad s−1

round the polar axis toward the east, in a rotating frame with the origin at a point on the earth’s surface, so that the
Cartesian coordinates (x, y, z) represent longitude, latitude, and the local vertical, respectively. The governing equations
for geophysical ocean waves are, cf. Pedlosky [7], the Euler equation

ut + uux + vuy + wuz + 2Ωw cosφ − 2Ωv sinφ = −
1
ρ
Px,

vt + uvx + vvy + wvz + 2Ωu sinφ = −
1
ρ
Py,

wt + uwx + vwy + wwz − 2Ωu cosφ = −
1
ρ
Pz − g,

(1)

coupled with the equation of mass conservation

ρt + uρx + vρy + wρz = 0 (2)

and with the incompressibility constraint

ux + vy + wz = 0. (3)
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Here t stands for time, φ for latitude, g = 9.81m s−2 is the (constant) gravitational acceleration at the Earth’s surface, and
ρ is the water’s density, while P is the pressure.

Since we restrict our attention to a symmetric band of width of about 250 km on each side of the Equator, the
approximations sinφ ≈ φ and cosφ ≈ 1 can be used, cf. Vallis [8]. This approximation, called the equatorial β-plane
approximation, approximates the Coriolis force

2Ω


w cosφ − v sinφ

u sinφ
−u cosφ



by 2Ωw − βyv
βyu

−2Ωu



with β = 2Ω/R = 2.28 ·10−11 m−1 s−1, cf. Cushman-Roisin and Becker [9]. Consequently, the Euler equation (1) is replaced
by 

ut + uux + vuy + wuz + 2Ωw − βyv = −
1
ρ
Px,

vt + uvx + vvy + wvz + βyu = −
1
ρ
Py,

wt + uwx + vwy + wwz − 2Ωu = −
1
ρ
Pz − g.

(4)

We work with a two-layer model: two layers of constant densities, separated by a sharp interface—the thermocline. Let
z = η(x, y, t) be the equation of the thermocline. We model the oscillations of this interface as propagating in the
longitudinal direction at constant speed c . The upper boundary of the region M(t) above the thermocline and beneath the
near-surface layer L(t) to which wind effects are confined is given by z = η+(x, y, t). Beneath the thermocline the water
has a constant density ρ+ and is still: at every instant t we have u = v = w = 0 for z < η(x, y, t). From (4) we infer that

P = P0 − ρ+gz in the region z < η(x, y, t),

for some constant P0. We investigate the eastward propagation of geophysical waves with vanishing meridional velocity
(v ≡ 0) in the region M(t), without discussing the interaction of geophysical waves and wind waves in the region L(t).
ThroughoutM(t) the water is assumed to have constant density ρ0 < ρ+, the typical value of the reduced gravity

g̃ = g
ρ+ − ρ0

ρ0
(5)

being 6 · 10−3 ms−2, cf. Fedorov and Brown [10]. Consequently, we seek solutions (u(x, y, z, t), w(x, y, z, t), η(x, y, t) and
η+(x, y, t)) of the Euler equations in the form

ut + uux + wuz + 2Ωw = −
1
ρ
Px,

βyu = −
1
ρ
Py,

wt + uwx + wwz − 2Ωu = −
1
ρ
Pz − g,

(6)

in η(x, y, t) < z < η+(x, y, t), coupled with the incompressibility condition

ux + wz = 0 in η(x, y, t) < z < η+(x, y, t), (7)

and with the boundary condition

P = P0 − ρ+gz on z = η(x, y, t). (8)

Moreover, we impose that the flow approaches a uniform current rapidly in the near-surface layer, that is

(u, v) → (−U, 0) as z → η+(x, y, t). (9)
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