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a b s t r a c t

A common approach to describing invasions of non-native species into previously
unoccupied habitat is to consider the speed of population expansion and the existence of
travelingwaves. Typical existence theorems for travelingwaves require some compactness
properties of the next-generation operator. Many realistic modeling assumptions,
however, give rise to non-compact operators; for example the occurrence of sessile stages
during the life cycle of an individual. Recent results have extended the existence theory
of traveling waves to a large class of weakly compact operators, but conditions can be
difficult to check and not easily accessible to theoretical ecologists. In this paper, we give
a new proof for the existence of traveling waves in a large class of equations where the
next generation operator is not compact, but rather the sum of an integral operator and a
contraction. We illustrate our proof with a model for the dispersal of a plant species with
a seed-bank and a model for dispersal of stream insects with larval stages.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Invasions of non-native organisms into novel territory can cause huge economic loss, and they pose a great global
challenge to the maintenance of biodiversity. For example, while the mountain pine beetle continues to threaten forests
across Western North America, the Emerald Ash Borer is spreading from its North American introduction site in Michigan
to 14 other states and to Canada, destroying Ash trees along the way. Mathematical modeling of biological invasions is of
crucial importance, given the spatial and temporal scales involved. The first models date back to Fisher [1] and Skellam [2];
current theory continues to challenge mathematicians and ecologists alike [3–7].

Mathematical models for biological invasions are typically written as reaction–diffusion equations or, more recently, as
integrodifference and integrodifferential equations. Since the seminalwork ofWeinberger [8], questions about the existence
of a spreading speed (see definition below) and traveling waves are studied using a recursion of the form

un+1 = Q [un], n ∈ N, (1.1)

where un represents the density of the population in the habitat, which we assume to be R, at time n ∈ N. (The extension to
planar waves in higher dimensions is straight forward.) Integrodifference equations naturally come in this form, whereas
for continuous-time equations, one considers the time-one map.
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The equations we consider in this work are formulated in discrete time since natural annual variation often imposes
clearly distinct seasons of growth and spread of individuals. In the simplest case, the ‘‘next-generation operator’’ Q is
typically of the form

Q [u](x) =


R
K(x − y)f (u(y))dy, (1.2)

where the ‘‘kernel’’ K is the density of a probability measure on R, and f is a scalar function that characterizes the growth
of the population in the absence of spatial movement. An example for such a function is the scaled Beverton–Holt function

f (u) =
ru

1 + (r − 1)u
, (1.3)

where r > 1 is a constant, known as the intrinsic rate of growth at low population density. When the species under
consideration exhibits a more complicated life cycle then model formulation is more difficult, for example, stage structured
models may result [9]. We give a detailed derivation of two particular models in Section 2, but first we explain the
background of past mathematical results and challenges.

The pioneering works by Aronson–Weinberger [10,11] and Weinberger [8,12] establish the existence of an asymptotic
spreading speed and of traveling waves for Eq. (1.1) and its continuous-time analogue. Lui and, more recently, Liang and
Zhao extendedmany of these results to monotone systems of such equations [13–16]. An excellent recent overview is given
by Zhao; see [17].

It is well known that Eq. (1.1) has an asymptotic spreading speed, c∗, if the fecundity function f is nondecreasing
[8,12,14], and if some fairlymild conditions onQ are satisfied. Themost important of these conditions being that themoment
generating function of the kernel K exists in some interval around zero. This speed c∗ can be characterized as the lowest
speed of a family of non-constant traveling wave solutions of (1.1). Moreover, c∗ can be expressed explicitly by a simple
formula if additional conditions on f hold (see [18,19,12,8]). In order to prove the existence of travelingwaves, however, one
typically requires that the operator Q be compact [15,8], or weakly compact [16, condition (A3)]. The existence of traveling
waves is much harder to showwhen the next-generation operator is not weakly compact. For the case of weak compactness
we refer the reader to [20] and the general theory in [16]. Finite-dimensional cooperative systems of integrodifference
equations were studied by Lui [13,14], Weinberger, Li and Lewis [21–23] and Liang and Zhao [15,16]. Again, the existence of
a spreading speed is often guaranteed under fairly mild conditions on the operator Q , but the existence of traveling waves
requires that operator to be weakly compact.

A number of scenarios give rise to a non-compact next-generation operator Q . For example, Volkov and Lui considered
growth and spread of a populationwhere a fraction of individuals is sedentary and does notmove in space [20]. They studied
the equation

un+1(x) = Qg [un](x) = (1 − g)


Rd
K(x − y)f (un(y))dy + gf (un(x)). (1.4)

In this case, g ∈ [0, 1] is the (constant) probability that an individual does not move from one time step to the next. For
g > 0, the operatorQg , as an operator acting in a subspace of the space of continuous functions, is not compact. The existence
of an asymptotic spreading speed still follows from the general theory by Weinberger [12]. Volkov and Lui proved also
the existence of traveling waves for this model. The case where g depends on the density of the population, that is, g is a
function of un, was considered in [24]. For specifically chosen functions f , g, K a traveling wave was calculated explicitly,
but the general theory remains wide open. Even the existence of a spreading speed is not clear in the general case. Note
that, under the condition that the kernel K be continuous, the next generation operator determined by (1.4) satisfies the
weak compactness condition (A3) in [16], so the general theory of [16] is applicable. In some cases, the operator Q is
compact even if the kernel K is not continuous, for example the top-hat kernel with mean dispersal distance β , that is,
K(x) = χ [−2β, 2β](x)/(4β). A model for structured populations with non-dispersing stages was formulated by Neubert
and Caswell [9], but the existence of traveling waves was not discussed.

In this work, we prove the existence of traveling waves for a class of structured population models where the next-
generation operator is not compact. We give two examples of how such operators arise in the next section. We give details
of our proof for a particular example of a population with two stages in Section 3. The general case follows; we include it in
our discussion. Before we start, we would like to point out that our idea and methods of proof are quite different and much
less technical than the theory developed by Liang and Zhao [16], in particular, the conditions and results formulated here,
see Section 2.5, are much more accessible to theoretical ecologists.

2. Models and assumptions

2.1. Plants with seed-bank

We consider an annual plant species whose seeds may stay dormant in the soil for several years (seed bank) before
they germinate and grow. This delayed germination is crucial for the species to survive in unpredictable environments [25].
Seeds can remain dormant in the soil for decades, and the density in a seed bank can be as high as hundreds of seeds per
square meter [26]. Germination probabilities may depend on the age of the seed in a seed bank. Rees and Long found that
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