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a b s t r a c t

We are concerned with the asymptotic behavior of a dynamical system generated by a
family of semilinear parabolic systems with reaction and potential terms concentrating in
a neighborhood of a portion of the boundary. Assuming that this neighborhood shrinks to
this section as a parameter ϵ goes to zero,we exhibit the limit problemand show continuity
of the flux as well as upper and lower semicontinuity of the family of global attractors with
respect to ϵ using an appropriated functional setting on suitable conditions for the system.
It is worth noting that oscillatory behavior to the neighborhood as ϵ goes to zero is also
allowed providing a large range of applications.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we are interested in discussing the behavior of the asymptotic dynamics generated by a dissipative
semilinear parabolic systemwith nonlinear boundary conditions when some reaction and potential terms are concentrated
in a narrow neighborhood of a portion Γ0 of the boundary that shrinks to it when a small positive parameter ϵ goes to zero.

Our nonlinear reaction–diffusion model is supposed to represent several interactions among agents, which can be cells,
amount of chemical, density of animals and so on,whose someone of reactions occur only in an extremely thin neighborhood
near this region border Γ0. It is worth noting that our model enables this narrow strip also bring forward some kind of
oscillating behavior modeling complex regions of interactions.

Potential applications of the results presented here includemanagement and control of aquatic ecological systemswhere
one finds localized concentrations in connectionwith boundary complexity. For instance, wemaymention [1–5] where the-
oretical and practical aspects of mathematical modeling applied to limnology, oceanography and transitional water systems
have been deeply investigated.

Of course, we are dealing with a singular partial differential equation brought out by thickness and oscillating behavior
of the ϵ-neighborhoodwhere the reactions take place.Wewill see that in some sense, this singular boundary value problem
can be approximated by a semilinear nonlinear reaction–diffusion system, also with nonlinear boundary condition, where
the geometric oscillating behavior of the reaction neighborhood is exhibited as a flux condition and a potential term on the
portionΓ0 of the domain border. The limit problem obtained is not singular being an option to replace the original onewhen
the ϵ parameter is close to zero, that is, when the small strip is very narrow and rough. Also, it displays some features of the
original system pointing out their emergent properties giving us conditions to get the qualitative behavior of the modeled
problem.
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We observe that this sort of modeling was initially introduced in [6], where a linear elliptic problem was considered.
There, they restrict themselves to consider a narrow neighborhood without oscillatory behavior. Later, the asymptotic
behavior of the dynamics of a nonlinear parabolic equation was analyzed in [7,8], where the upper semicontinuity of
attractorswas proved.We recall that an attractor is a compact invariant setwhich attracts the flow for all bounded sets of the
phase space. In fact, it contains all the asymptotic dynamics of the systemand all global bounded solutions lie in the attractor.

Analogous arguments from [6] has been employed in [9,10], where a reaction–diffusion problem with delay has been
studied. In thoseworks, the boundary of the domain is suppose to be smooth. Results from [6] also have been adapted in [11]
to a nonlinear elliptic problem posed on a Lipschitz domain presenting a highly oscillatory behavior on a neighborhood of
the boundary using some ideas from [12,13], where elliptic and parabolic equations defined in thin domains with a highly
oscillatory behavior have been extensively investigated. We have also shown in [14] the upper and lower semicontinuity of
the dynamics of the scalar case of thismodel, that is, when (2.1) is just one equation and just one agent is considered to react.

Our goal here is to extend the results from [14] to a semilinear parabolic system, with nonlinear boundary condition.
In fact, we are interested in discussing here a more effective model with reaction and potential terms concentrating on
boundary. We consider the situation in which several agents are interacting near an oscillating narrow strip very close to
some portion of the border. Our approach will be somewhat different from the one in [7,8] and closer to the one in [14],
where some abstract results on continuity of attractors from [15] were properly applied.

2. Notation and main results

To be more precise, let us introduce the semilinear parabolic model. We begin setting the open bounded a C2-regular
domain Ω ⊂ R2 with boundary ∂Ω satisfying ∂Ω = Γ0 ∪ Γ1 where {Γ0, Γ1} is a regular partition of the boundary, that is,
Γ0 ∩ Γ1 = ∅. Note that either Γ0 or Γ1 could be empty. Now, to set the narrow neighborhood we will use two nonnegative
parameters, namely, ϵ and α. ϵ will represent the thickness of the strip, and α its oscillatory behavior. We take a function
Gϵ(·) = Gϵ,α(·) satisfying 0 < G0 6 Gϵ(·) 6 G1 for positive constants G0 and G1, which is high oscillating as the small
positive parameter ϵ → 0 and α > 0. We establish this by expression

Gϵ(x) = G(x, x/ϵα), ϵ > 0, and α ≥ 0,

where the function G : (0, 1) × R → R is a positive smooth function such that y → G(x, y) is l(x)-periodic in y for each
x, with period l(x) uniformly bounded in (0, 1), that is, 0 < l0 < l(·) < l1. Next, let x, y ∈ C2([0, 1]) such that the curve
ζ (s) = (x(s), y(s)), s ∈ [0, 1], is a C2-parametrization of the portion Γ0 ⊂ ∂Ω with

ζ ′(s)
 = 1, for all s ∈ [0, 1]. We also

assume that N(ζ (s)) = (y′(s), −x′(s)) is the unit outward normal vector to Γ0. Finally, we can define our narrow oscillating
strip by

ωϵ = ωϵ,α =

ξ ∈ R2

: ξ = ζ (s) − tN(ζ (s)), s ∈ [0, 1] and 0 6 t < ϵ Gϵ(s)

,

for ϵ > 0 sufficiently small, say 0 < ϵ 6 ϵ0, and α ≥ 0.
This way of setting thickness and oscillation, let us denote the functions and the strip only with respect to ϵ. Indeed,

we enable oscillations and thickness just assigning α > 0 and taking ϵ very close to zero. It is clear that the subset ωϵ

defines a neighborhood of Γ0 in Ω̄ that collapses to the portion Γ0 when the parameter ϵ goes to zero since the function Gϵ

is uniformly bounded for all α ≥ 0. Also, we observe that the ‘‘inner boundary’’ of ωϵ , given by
ξ ∈ R2

: ξ = ζ (s) − ϵ Gϵ(s)N(ζ (s)), s ∈ [0, 1]

,

presents a high oscillatory behavior as α ≫ 0 and ϵ is close to zero. Note that our assumptions allow the case without
oscillating, achieved when α = 0, and defined by Gϵ(x) = G(x, x) independent of ϵ, as well as, the purely periodic behavior
given, for example, by Gϵ(x) = 2 + sin(x/ϵα) with α > 0. Observe that we also include the case where Gϵ sets up a
neighborhood wherein the oscillation period, the amplitude and the strip profile is modulated with respect to the variable
x ∈ (0, 1) such as Gϵ(x) = K(x) + A(x) sin(P(x)/ϵα) with α > 0 and K , A, P : [0, 1] → R+. See Figs. 1 and 2 that illustrate
the graph of an accepted function Gϵ , and the oscillating strip ωϵ ⊂ Ω for the purely periodic case with α > 0.

In this work, we are interested in the long time behavior of the solutions of the following weakly coupled nonlinear
reaction–diffusion system of the form

uϵ
t − div (a(·)∇uϵ) + λuϵ

+
1
ϵ

Xϵ V ϵ(·) uϵ
= f (·, uϵ) +

1
ϵ

Xϵ g(·, uϵ) in Ω

∂uϵ

∂na
= h(·, uϵ) on Γ0

uϵ
= 0 on Γ1

(2.1)

where u = (u1, . . . , um)ᵀ, for some m ∈ N, a(x) = diag(a1(x), . . . , am(x)), ai ∈ C1(Ω̄), ai(x) > m0 > 0 for x ∈ Ω, div(a(·)
∇uϵ) = (div(a1(·)∇uϵ

1), . . . , div(am(·)∇uϵ
m))ᵀ, ∂u

∂na
= (

∂u1
∂na1

, . . . , ∂um
∂nam

)ᵀ with ∂ui
∂nai

= ⟨ai∇ui, n⟩ for 1 ≤ i ≤ m, n denotes the
unit outward normal vector to ∂Ω, Xϵ ∈ L∞(Ω) is the characteristic function of the set ωϵ and λ is a suitable real number.
The nonlinearities f = (f1, . . . , fm)ᵀ, g = (g1, . . . , gm)ᵀ, and h = (h1, . . . , hm)ᵀ

: O × Rm
→ Rm are smooth functions

where O ⊂ R2 is an open set containing Ω̄ .
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