Nonlinear Analysis: Real World Applications 14 (2013) 997-1025

(=

Nonlinear
Analysls

Contents lists available at SciVerse ScienceDirect

Nonlinear Analysis: Real World Applications

journal homepage: www.elsevier.com/locate/nonrwa

Effect of localized input on bump solutions in a two-population
neural-field model

Muhammad Yousaf®P, John Wyller **, Tom Tetzlaff¢, Gaute T. Einevoll ¢

2 Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, P.0. Box 5003, N-1432 As, Norway
b Department of Mathematics, COMSATS Institute of Information Technology, Lahore, Pakistan
¢ Inst. of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience, Research Center Jiilich, Germany

ARTICLE INFO ABSTRACT

Article history:

We investigate a two-population Wilson-Cowan model extended with stationary and
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However, for strongly localized external inputs we find that three and even four bump
pairs, all with symmetric activity profiles around the center of the localized external
input, may coexist. We next investigate the stability of these bump pairs using two
different techniques: a simplified phase-space reduction (Amari) technique and full
stability analysis. Examples of models, i.e., choices of model parameters, exhibiting up
to three stable bump pairs are found. The Amari technique is further found to be a poor

predictor of stability in the case of strongly localized external inputs. The bump-pair states
are also probed numerically using a fourth order Runge-Kutta method, and an excellent
agreement is found between numerical simulations and the analytical predictions from
full stability analysis.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Experiments have implicated persistent neuronal firing as a possible substrate for short-term memory [1-3], and
this has spurred significant interest among modelers in investigating persistent neural-network activity [4-7] and, in
particular, spatially localized activity solutions, ‘bumps’, of neuron network models [7,8]. In recurrent networks such
localized stationary states are naturally formed by a combination of (i) a strong and localized recurrent excitation boosting
the bump and (ii) a spatially more extended ‘lateral’ inhibition preventing the bump from growing in size [9]. Neuronal field
models have provided a powerful and versatile tool for the investigation of the properties of such bump states [8-13], and a
large number of studies have used such models to study generic properties of bumps such as conditions for their existence
and stability [ 14-27].

Most of these studies have focused on the generic properties of bumps for spatially homogeneous, i.e., translationally
invariant, networks without external inputs. In some studies homogeneous inputs have been included [9,14,20]. However,
as such inputs do not violate the translational invariance of the model, few new qualitative features are introduced, and the
effects are akin to changing the effective firing threshold in the neural-field firing-rate functions. A more interesting situation
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arises when the external input is spatially localized as this breaks the translational invariance. Further, the situation with
such localized inputs is expected to be common in real neural networks, for example, in primary visual cortex where such
inputs must underlie the prominent retinotopic organization [28]. Models with localized inputs have been explored in the
context of orientation tuning in visual cortex [29,30]. In a more general setting, Folias and Bressloff [19] analyzed bumps
in a one-population model with spatially localized external inputs and found that (i) sufficiently large inputs can stabilize
bump states and (ii) that reduction of the input amplitude may induce a Hopf instability and the conversion of stable bumps
into breather-like oscillatory waves.

In the present study we investigate the effects of spatially localized external inputs on bump states in a two-population
Wilson-Cowan like model with one excitatory and one inhibitory population. We have previously investigated bump states
in this model without external inputs [24,27], and an interesting feature is the key role played by the inhibitory time constant
in determining the stability of bumps. The bumps are found to be stable only for inhibitory time constants below a critical
value, about three times the excitatory time constant for the example in [24], while the bumps are converted to stable
breathers through a Hopf bifurcation at the critical value. This crucial dependence on the ratio of inhibitory and excitatory
time constants, which obviously cannot be addressed in a one-population model, has previously been seen in extensive
network simulation of integrate-and-fire neurons [4,6].

The model investigated is a direct extension of the model studied in [24] with spatially dependent external inputs added
to the equations describing the dynamics of both the excitatory and inhibitory populations:
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Here u.(x, t) and u;(x, t) are excitatory and inhibitory activity levels, w;, (x) the distance-dependent connectivity strengths,
P, and P; the firing-rate functions for the excitatory and inhibitory populations, 6, and 6; the threshold values for firing of
these excitatory and inhibitory populations, and 7 the relative inhibition time, i.e., the ratio between the inhibitory and the
excitatory time constants. (The excitatory time constant is, for convenience, set to unity.), Finally, h.(x) and h;(x) represent
the new elements introduced to the model used in [24], i.e., stationary, localized external inputs.

The generic situation for the case without external inputs consists of two bump pairs, one narrow bump pair and one
broad bump pair [24]. For spatially wide localized external inputs we find this generic picture to be unchanged. However, for
strongly localized external inputs a more interesting situation emerges: here three and even four bump pairs may coexist.
We next investigate the stability of these bump pairs. The two techniques used in [24], namely the simplified phase-space
reduction technique (the so called Amari technique) and full stability analysis, are considered, and we find that the Amari
technique fails to produce the correct stability results in the case of strongly localized external inputs.

The paper is organized as follows: In Section 2, we discuss the two population model (1) in some detail. We show that
the solution of the initial value problem of this system is globally bounded and that spatially dependent external inputs
represent a symmetry breaking effect i.e. the translational invariance property is violated. The existence and uniqueness of
localized stationary solutions (bumps) for a given pair of threshold values subject to the spatially dependent external input
are addressed in Section 4. Here and in the rest of the paper it is assumed that the firing rate functions are given by means
of the Heaviside functions. In Section 5 we investigate the stability of these bumps analytically by using the Amari approach
and full stability analysis. Section 6 is devoted to numerical simulations, where the time evolutions of localized structures
are investigated by using a fourth order Runge-Kutta method. Section 7 contain a summary of the results and an outlook.
Appendix A contains the detailed derivation of the growth rate equations in the full stability analysis in Section 5, Appendix B
gives the description of the numerical code underlying the numerical simulations of Section 6, while Appendix C contains
the technical details underlying the discussion on the discrepancy between the Amari analysis and full stability analysis.

2. Model

The model described by (1) can more compactly be written as
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