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a b s t r a c t

In this paper we study a model of thermal explosion which is described by positive solu-
tions to the boundary value problem

−∆u = λf (u), x ∈ Ω,
n · ∇u + c(u)u = 0, x ∈ ∂Ω,

where f , c : [0,∞) → (0,∞) are C1 and C1,γ non decreasing functions satisfying limu→∞
f (u)
u = 0,Ω is a bounded domain in RN with smooth boundary ∂Ω and λ > 0 is a param-

eter. Using the method of sub and super-solutions we show that the solution of this prob-
lem is unique for large and small values of parameter λ, whereas for intermediate values
of λ solutions are multiple provided nonlinearity f satisfies some natural assumptions. An
example of such nonlinearity which is most relevant to applications and satisfies all our
hypotheses is f (u) = exp[ αu

α+u ] for α ≫ 1.
© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of thermal explosion, spontaneous initiation of a rapid combustion process, is a classical problem of com-
bustion theory which has been studied for over 80 years. The modeling of this process traces back to pioneering works of
Semenov, Frank-Kamenetskii and Zeldovich [1–3]. In a rather general setting the problem of spontaneous ignition can be
formulated as a following initial value problem:Tt −∆T = λf (T ), (t, x) ∈ (0,∞)×Ω,

n · ∇T + c(T )T = 0, (t, x) ∈ (0,∞)× ∂Ω,
T (0, x) = 0, x ∈ ∂Ω.

(1.1)

Here, T is an appropriately normalized temperature distribution in a bounded smooth domain Ω ⊂ RN ,N ≥ 1, which
evolves in time due to thermal diffusivity and chemical reaction. The latter is described by chemical kinetics term f (T ). The
most common example of chemical reaction term is Arrhenius law in which case

f (T ) = exp


αT
α + T


, (1.2)
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where the parameter α > 0 (usually large) is a scaled activation energy. More generally and as we assume throughout of
this paper the function f satisfies following two hypotheses:

(H1) f : [0,∞) → (0,∞) is a C1 non decreasing function,

and

(H2) lims→∞
f (s)
s = 0.

The parameter λ > 0 is a scaling parameter and can be associated with the size of the domainΩ which grows (in a phys-
ical space) as λ increases. To account substantial interaction with the surroundings, heat-loss conditions are imposed on a
boundary ∂Ω with outward normal n, where the heat loss parameter c(T ) satisfies:

(H3) c : [0,∞) → (0,∞) is a C1,γ non decreasing function with γ ∈ (0, 1).

Physically this assumption means that a heat loss through the boundary is always present and increases for higher temper-
atures. Finally, initial normalized temperature is assumed to be equal to the one of the surroundings which is set to be equal
to zero.

It is well known that a long time behavior of solutions for the problem (1.1) is fully determined by its stationary solutions,
that is solutions of the following problem

−∆u = λf (u), x ∈ Ω,
n · ∇u + c(u)u = 0, x ∈ ∂Ω.

(1.3)

Indeed, a direct application of the parabolic comparison principle [4] shows that solutions of the problem (1.1) approach a
minimal solution of the problem (1.3) as t → ∞ provided the latter exists (see Remark 2.1 in next section for more details).
Here and below a minimal solution u♯ of the problem (1.3) is a function which verifies (1.3) (possibly in a weak sense) and
satisfies u♯ ≤ u in Ω̄ for any function u which solves (1.3). One can show that such a solution exists and is well defined as
long as (1.3) has a solution [5]. Thus, comparison principle implies that a limiting temperature distribution is the minimal
possible stationary temperature distribution. As a result, the analysis of thermal explosion described by the problem (1.1)
reduces to the analysis of stationary temperature distributions described by the problem (1.3).

Let us point out that the nonlinear heat loss boundary condition in (1.1) and (1.3) which is considered in this paper is
not very typical for classical combustion problems but is relevant to some more recent applications. Indeed, in a classical
theory of thermal explosion when say modeling ignition in a combustion chamber heat loss on the boundary is so strong
and intrinsic time scales are so small that one may assume that the temperature on the boundary of the domain is equal to
the one of the surroundings which lead to a Dirichlet boundary conditions T = 0 on ∂Ω , so called cold boundary condition.
This condition can be obtained from the one in (1.1) and (1.3) by formally setting c = ∞. This case, therefore, corresponds
to an infinite heat loss on the boundary. The case of cold boundary conditions was studied quite extensively in the literature
(see [6–16]). In some real world applications, however, simplifications of classical approach discussed above cannot be
adopted. Such applications include problems of safe storage of energetic materials and nuclear waste [17] or even raw
garbage [18]. For these applications induction time (time prior to ignition) can vary from several hours to months, whereas
in the classical theory of thermal explosion induction time is typically a fraction of a second. It is clear that over such a
long time period the boundary of reactive material will be preheated to a temperature significantly higher than the one of
the surroundings. As a result, conventional cold boundary conditions are not applicable anymore and a heat loss boundary
condition should be used instead to properly describe the thermal equilibrium of the boundary.

As we mentioned earlier, solutions of the problem (1.3) with Dirichlet boundary conditions (problem (1.3) with c = ∞)
were studied by several authors. The behavior of solutions for this problem, which always exist, critically depends on prop-
erties of the nonlinearity and the value of scaling parameter λ. In the case when the nonlinear term f (u) resembles the one
corresponding to Arrhenius kinetics (given by Eq. (1.2)) with high activation energy (α ≫ 1), generically (1.3) has multiple
solutions for a certain range of the parameter λ. Specifically, it was shown in [8,9,11,12,19,20,16] that for small and large
values of λ the solution of (1.3) with c = ∞ is unique, whereas for intermediate values of λ there are at least three solutions.
The typical diagram of L∞ norm of such solutions is given on Fig. 1. This picture has a very natural physical interpretation.
Recall that λ is a scaling parameter which scales the size of the domain. For small domains with the size smaller than the one
corresponding to λ∗ the heat loss on the boundary suppressed the chemical reaction inside the domain and thus temper-
ature stays at relatively small values. We note that in this regime even substantial energy deposition into the system does
not lead to explosion but rather to a slow burning and eventual quenching. For domains of intermediate size (λ∗ ≤ λ ≤ λ∗)
thermal explosion is still impossible, however substantial deposition of the energy into the system may lead to ignition as-
sociatedwith rapid transition fromminimal tomaximal solution. For large domains corresponding to λ > λ∗ the situation is
opposite. The chemical reaction inside the domain dominates the boundary heat loss which leads to spontaneous explosion.
In other words, thermal explosion occurs in a region of λ’s where minimal solutions obtained as continuation of minimal
solution corresponding to λ = 0 cease to exist. To reflect this fact it is convenient to introduce a notion of ∗-minimal so-
lution. We say that u♯

λ′ belongs to a family of ∗-minimal solutions if u♯
λ′ is a minimal solution of (1.3) and minimal solutions

u♯λ are continuous with respect to λ on (0, λ′). Using this term one can say that thermal explosion occurs exclusively due to
the absence of ∗-minimal solution for the problem (1.3) for λ > λ∗.
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