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1. Introduction

We consider the flow of two macroscopically immiscible, incompressible non-Newtonian fluids. In contrast to classical
sharp interface models, a partial mixing of the fluids is taken into account, which leads to a so-called diffuse interface model.
This has the advantage that flows beyond the occurrence of topological singularities e.g. due to droplet collision or pinch-off
can be described. More precisely we consider

pdV+ pv- Vv —divS(c, Dv) + Vp = —kdiv (Vc ® Vo), (1.1)
divv =0, (1.2)
oc+v-Vc=mApu, (1.3)
w=k"'¢(c) — kAc (1.4)

inQr = £ x (0, T), where 2 C RY, d > 2, is a bounded domain and T € (0, 00). Here v is the mean velocity, Dv = %(Vv—l—
VvT), pis the pressure, c is an order parameter related to the concentration of the fluids e.g. the concentration difference or
the concentration of one component, and p is the density of the fluids, which is assumed to be constant. Moreover, S(c, Dv)
is the viscous part of the stress tensor of the mixture to be specified below, ¥ > 0 is a (small) parameter, which is related to
the “thickness” of the interfacial region, @: R — R is a homogeneous free energy density and ¢ = &’ and y is the chemical
potential. Capillary forces due to surface tension are modeled by an extra contribution x Vc ® V¢ := « Vc(Ve)T in the stress
tensor leading to the term on the right-hand side of (1.1). Moreover, we note that in the modeling diffusion of the fluid
components is taken into account. Therefore mA u is appearing in (1.3), where m > 0 is a constant mobility coefficient.
We close the system by adding the boundary and initial conditions

Vo =0 ondf2 x (0,7), (1.5)
n-Vclpe =n-Vulye =0 ondf2 x (0, 00), (1.6)
(v, ©)|t=0 = (Vo, ¢o) in£2. (17
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Here n denotes the exterior normal at d£2. We note that (1.1) can be replaced by
porv + pv - Vv —divS(c,Dv) + Vg = uVc (1.8)
withg = p + 5|Vc|* + k'@ (c) since

uve =V (gqu + K—lqb(c)) — «ediv (Ve ® Vo). (1.9)

In the case of Newtonian fluids, i.e., S(c, Dv) = v(c)Dv for some positive viscosity coefficient v(c), the model was first
discussed by Hohenberg and Halperin [1]. Later it was derived in the framework of rational continuum mechanics by Gurtin,
Polignone, Vifials [2]. The latter derivation can be easily modified to include a suitable non-Newtonian behavior of the fluids.
If e.g. S(c, Dv) is chosen such that S(c, Dv) : Dv > 0, the local dissipation inequality, which yields thermodynamical
consistency, remains valid. For results on existence of weak and strong solutions in the case of Newtonian fluids we
refer to Starovoitov [3], Boyer [4], and A. [5]. First analytic results for the system (1.1)-(1.4) for non-Newtonian fluids of
power-law type were obtained by Kim, Consiglieri, and Rodrigues [6]. The authors proved existence of weak solutions if

q > 3;’%22, d = 2, 3, where q is the power describing the growth of the stress tensor with respect to Dv. For this range of

g monotone operator techniques can be applied. Moreover, in the cased = 3and2 < q < % the authors prove existence
of measure-valued solutions. Grasselli and PraZak [7] discussed the longtime behavior of solutions of (1.1)-(1.4) in the case
q=> 3;%2 d = 2, 3 assuming periodic boundary conditions and a regular free energy density. For the same range of g results
on existence of weak solutions with a singular free energy density f and the longtime behavior were obtained by Bosia [8]
in the case of a bounded domain in R3.

The goal of this article is to extend the existence result to lower values of g in order to include the physically important
case of shear thinning flows. In the case of a single fluid existence of weak solutions for power-law type fluids was proved
for the caseq > %, d > 2,by D., RiZicka, and Wolf[9]. The proof is based on a parabolic Lipschitz truncation method and a
careful decomposition of the pressure, which is needed since the Lipschitz truncation used does not preserve the divergence
freeness of a velocity field. Recently a parabolic Lipschitz truncation method, which keeps divergence free velocity fields
divergence free, was developed by Breit, D. and Schwarzacher [10]. In the present article we will use this method in order
to prove existence of weak solutions to (1.1)-(1.7) if S(c, Dv) is of power law type with an exponent q > % Precise
assumptions are made in the following.

For simplicity we assume that k = p = 1, but all results are true for general (fixed) x, p > 0. Moreover, we assume:

Assumption 1.1. Let 2 C RY, d = 2, 3, be a bounded domain with C3-boundary and let & € C([a, b]) N C?((a, b)) be such
that ¢ = @’ satisfies

lgré ¢(s) = —o0, 1imb ¢(s) = oo, ¢'(s) > —a

for some o« € R.Let m > 0 and letS: [a, b] x R¥*¢ — R9*4 be such that

IS(c, M)| < C(lsym (M)[*~" 4 1) (1.10)
S(c1, M) — S(c2, M)| < Clcy — 6| (Isym (M)[97" + 1) (1.11)
S(c,M) : M > w|sym (M)|? — (4 (1.12)
forallM € R ¢, ¢q, ¢, € [a, b],and some C, C;, w > 0, q € (d%, 00). Here sym (M) = 3(M+M") andA : B = tr (A"B).
Moreover, we assume that S(c, -): R&<4 — R9Ix4 is strictly monotone for every ¢ € [a, b], where RIX¢ = {A € R%{ :

sym sym sym

AT = A}.

For the following we denote

|Vel?
Emix(c) = dx + P(c) dx.
2 2 2

Letv € [9(0, T; W;!O(.Q)d) NL®(0,T; [2(£2)),c € [®(0, T; H1(£2)) N L2(0, T; H2(£2)) with @ (c) € [*(£2 x (0, T)), and

w e %0, T; H'(£2)), where 0 < T < oo. Then (v, c, 1) is a weak solution of the system (1.1)-(1.7) if for any ¢ € C*(Qr)¢
with divg = 0 and supp(¢) CC §2 x [0, T) the following holds:

—/ V-0 d(x,t) —/ v V:Ded(, t)—|—/ S(c,Dv) : D d(x, t)
Qr Qr Qr

:/ Ve ® Ve : Do d(x, t)+/ Vo - 9(0) dx (1.13)
Qr Q2
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