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a b s t r a c t

We consider a phase field model for the flow of two partly miscible incompressible, vis-
cous fluids of non-Newtonian (power law) type. In the model it is assumed that the den-
sities of the fluids are equal. We prove the existence of weak solutions for general initial
data and arbitrarily large times with the aid of a parabolic Lipschitz truncation method,
which preserves solenoidal velocity fields and was recently developed by Breit, Diening,
and Schwarzacher.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the flow of two macroscopically immiscible, incompressible non-Newtonian fluids. In contrast to classical
sharp interfacemodels, a partial mixing of the fluids is taken into account, which leads to a so-called diffuse interfacemodel.
This has the advantage that flows beyond the occurrence of topological singularities e.g. due to droplet collision or pinch-off
can be described. More precisely we consider

ρ∂tv + ρv · ∇v − div S(c,Dv)+ ∇p = −κdiv (∇c ⊗ ∇c), (1.1)
div v = 0, (1.2)
∂tc + v · ∇c = m1µ, (1.3)
µ = κ−1φ(c)− κ1c (1.4)

in QT = Ω× (0, T ), whereΩ ⊆ Rd, d ≥ 2, is a bounded domain and T ∈ (0,∞). Here v is the mean velocity,Dv =
1
2 (∇v+

∇vT ), p is the pressure, c is an order parameter related to the concentration of the fluids e.g. the concentration difference or
the concentration of one component, and ρ is the density of the fluids, which is assumed to be constant. Moreover, S(c,Dv)
is the viscous part of the stress tensor of the mixture to be specified below, κ > 0 is a (small) parameter, which is related to
the ‘‘thickness’’ of the interfacial region,Φ:R → R is a homogeneous free energy density and φ = Φ ′ andµ is the chemical
potential. Capillary forces due to surface tension aremodeled by an extra contribution κ∇c⊗∇c := κ∇c(∇c)T in the stress
tensor leading to the term on the right-hand side of (1.1). Moreover, we note that in the modeling diffusion of the fluid
components is taken into account. Thereforem1µ is appearing in (1.3), wherem > 0 is a constant mobility coefficient.

We close the system by adding the boundary and initial conditions

v|∂Ω = 0 on ∂Ω × (0, T ), (1.5)
n · ∇c|∂Ω = n · ∇µ|∂Ω = 0 on ∂Ω × (0,∞), (1.6)
(v, c)|t=0 = (v0, c0) inΩ. (1.7)
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Here n denotes the exterior normal at ∂Ω . We note that (1.1) can be replaced by

ρ∂tv + ρv · ∇v − div S(c,Dv)+ ∇g = µ∇c (1.8)

with g = p +
κ
2 |∇c|2 + κ−1Φ(c) since

µ∇c = ∇

κ
2
|∇c|2 + κ−1Φ(c)


− κdiv (∇c ⊗ ∇c). (1.9)

In the case of Newtonian fluids, i.e., S(c,Dv) = ν(c)Dv for some positive viscosity coefficient ν(c), the model was first
discussed by Hohenberg and Halperin [1]. Later it was derived in the framework of rational continuummechanics by Gurtin,
Polignone, Viñals [2]. The latter derivation can be easilymodified to include a suitable non-Newtonian behavior of the fluids.
If e.g. S(c,Dv) is chosen such that S(c,Dv) : Dv ≥ 0, the local dissipation inequality, which yields thermodynamical
consistency, remains valid. For results on existence of weak and strong solutions in the case of Newtonian fluids we
refer to Starovoitov [3], Boyer [4], and A. [5]. First analytic results for the system (1.1)–(1.4) for non-Newtonian fluids of
power-law type were obtained by Kim, Consiglieri, and Rodrigues [6]. The authors proved existence of weak solutions if
q ≥

3d+2
d+2 , d = 2, 3, where q is the power describing the growth of the stress tensor with respect to Dv. For this range of

q monotone operator techniques can be applied. Moreover, in the case d = 3 and 2 ≤ q < 11
5 the authors prove existence

of measure-valued solutions. Grasselli and Pražak [7] discussed the longtime behavior of solutions of (1.1)–(1.4) in the case
q ≥

3d+2
d+2 , d = 2, 3 assuming periodic boundary conditions and a regular free energy density. For the same range of q results

on existence of weak solutions with a singular free energy density f and the longtime behavior were obtained by Bosia [8]
in the case of a bounded domain in R3.

The goal of this article is to extend the existence result to lower values of q in order to include the physically important
case of shear thinning flows. In the case of a single fluid existence of weak solutions for power-law type fluids was proved
for the case q > 2d

d+2 , d ≥ 2, by D., Růžička, andWolf [9]. The proof is based on a parabolic Lipschitz truncationmethod and a
careful decomposition of the pressure, which is needed since the Lipschitz truncation used does not preserve the divergence
freeness of a velocity field. Recently a parabolic Lipschitz truncation method, which keeps divergence free velocity fields
divergence free, was developed by Breit, D. and Schwarzacher [10]. In the present article we will use this method in order
to prove existence of weak solutions to (1.1)–(1.7) if S(c,Dv) is of power law type with an exponent q > 2d

d+2 . Precise
assumptions are made in the following.

For simplicity we assume that κ = ρ = 1, but all results are true for general (fixed) κ, ρ > 0. Moreover, we assume:

Assumption 1.1. LetΩ ⊂ Rd, d = 2, 3, be a bounded domain with C3-boundary and letΦ ∈ C([a, b])∩ C2((a, b)) be such
that φ = Φ ′ satisfies

lim
s→a

φ(s) = −∞, lim
s→b

φ(s) = ∞, φ′(s) ≥ −α

for some α ∈ R. Letm > 0 and let S: [a, b] × Rd×d
→ Rd×d be such that

|S(c,M)| ≤ C(|sym (M)|q−1
+ 1) (1.10)

|S(c1,M)− S(c2,M)| ≤ C |c1 − c2|(|sym (M)|q−1
+ 1) (1.11)

S(c,M) : M ≥ ω|sym (M)|q − C1 (1.12)

for allM ∈ Rd×d, c, c1, c2 ∈ [a, b], and some C, C1, ω > 0, q ∈ ( 2d
d+2 ,∞). Here sym (M) =

1
2 (M+MT ) and A : B = tr (ATB).

Moreover, we assume that S(c, ·):Rd×d
sym → Rd×d

sym is strictly monotone for every c ∈ [a, b], where Rd×d
sym = {A ∈ Rd×d

:

AT
= A}.

For the following we denote

Emix(c) =


Ω

|∇c|2

2
dx +


Ω

Φ(c) dx.

Let v ∈ Lq(0, T ;W 1
q,0(Ω)

d)∩ L∞(0, T ; L2σ (Ω)), c ∈ L∞(0, T ;H1(Ω))∩ L2(0, T ;H2(Ω))withΦ(c) ∈ L2(Ω × (0, T )), and
µ ∈ L2(0, T ;H1(Ω)), where 0 < T < ∞. Then (v, c, µ) is a weak solution of the system (1.1)–(1.7) if for any ϕ ∈ C∞(QT )

d

with divϕ = 0 and supp(ϕ) ⊂⊂ Ω × [0, T ) the following holds:

−


QT

v · ∂tϕ d(x, t)−


QT

v ⊗ v : Dϕ d(x, t)+


QT

S(c,Dv) : Dϕ d(x, t)

=


QT

∇c ⊗ ∇c : Dϕ d(x, t)+


Ω

v0 · ϕ(0) dx (1.13)
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