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a b s t r a c t

In the present paper, the boundary stabilization for the Camassa–Holm equation, which
describes a generalized formulation for the shallow water wave equation, on an interval is
investigated. This is a natural first step towards developing methods for control of flows.
We derive nonlinear boundary control laws that achieve global asymptotic stability. We
consider both the viscous and the inviscid Camassa–Holm equation, using both higher
order boundary control and Dirichlet boundary control.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, Holm and Staley introduced the b-family PDEs that describe the balance between convection and stretching
for small viscosity in the dynamics of a 1D nonlinear wave in fluids [1]:

mt + umx + buxm = εmxx, u = g ∗ m. (1.1)

Here u = g ∗ m denotes u(x) =


∞

−∞
g(x − y)m(y) dy and the term umx denotes the convection term, buxm the stretching

term, and εmxx the viscosity term. The convolution relates velocity u to momentum density m by integration against the
kernel g(x). In [1], the authors studied the effects of the balance parameter b and kernel g(x) of the solitary wave structures
and investigated their interactions analytically for ε = 0 and numerically for small viscosity ε ≠ 0. When (1.1) is restricted
to the peakon case g(x) = e−|x|/α with length scale α,m = u − α2uxx, Eq. (1.1) may be expressed solely in terms of the
velocity u(x, t) as (see [1–6])

ut + (b + 1)uux − εuxx = α2(utxx + uuxxx + buxuxx − εuxxxx), (1.2)

When α → 0, Eq. (1.2) reduces to

ut + (b + 1)uux − εuxx = 0, (1.3)

which covers the usual Burgers equation either by rescaling dimensions, or by setting b = 0. For b = 2, (1.2) is the 1D
version of the 3D Navier–Stokes-alpha model for turbulence (see [7]) as ε ≠ 0. In [8], Krstic studied the global stabilization
of the Burgers equation by boundary control. Volkwein has studied the optimal control of the Burgers equation using the
Lagrangian-SQPmethod [9]. Volkwein discussed the instantaneous control of the Burgers equation [10]. The distributed con-
trol problem for the Burgers equationwas studied in [11]. Zhu, Tian, and Zhao studied the optimal control of the KdV–Burgers
equation and the sufficient nonlinear KdV–Burgers equation [12,13]. Armaou and Christofides studied the feedback con-
trol of the Kuramto–Sivashing equation [14]. Ghattas and Bark studied the optimal control of 2D and 3D incompressible
Navier–Stokes flows [15]. In [16–18], Chen et al. indicated that there is a connection between the solutions of the NS-α and
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turbulence. Specifically, the explicit steady analytical solution of the NS-α equations was found to compare successfully
with empirical and numerical experimental data for mean velocity and Reynold’s stresses for turbulent flows in pipes and
channels. These comparisons led them to identify the NS-α equationswith the Reynold’s averaged Navier–Stokes equations.
These comparisons also led them to suggest that the NS-α equations could be used as a closure model for the mean effects
of subgrid excitations.

For b = 2, α ≠ 0 and ε = 0, it becomes the Camassa–Holm equation [19]. It has a bi-Hamiltonian structure and is
completely integrable [20–25]. Also there is a geometric interpretation of Eq. (1.2) in terms of geodesic flow on the diffeo-
morphism group of the circle [26,27]. In fact, the system (1.2) is related to the first negative flow of the AKNS hierarchy via
a reciprocal transformation. Its solitary waves are peaked [28]. They are orbitally stable and interact like solitons [29,30].
In [31], Ding and Tian researched the solution of 1D Navier–Stokes-alphamodel, or, the dissipative Camassa–Holm equation
and got the existence of the global attractor of the dissipative Camassa–Holmequation. Tian et al. derived the existence of the
optimal control of the viscous Camassa–Holm equation under the homogeneous boundary conditions [32]. Glass discussed
the controllability and asymptotic stabilization of the Camassa–Holm equationwith an additional force term, supported in a
nonempty interval, used as the control input [33]. More recently, in [34], Perrollaz studied the initial–boundary value prob-
lem and asymptotic stabilization of the Camassa–Holm equation on an interval used the returning method. In [35], by using
the fixed-point technique, the authors gave a local time existence and uniqueness result, based on which they discussed the
initial–boundary value problem and the asymptotic stabilization problem of the two-component Camassa–Holm Equation.

For b = 3, Eq. (1.1) becomes the Degasperis–Procesi equation [36], which is modeling the unidirectional propagation
of shallow water waves over a flat bottom. Here u(t, x) stands for the fluid velocity at time t in the spatial x direction.
After the D–P equation appeared, the Cauchy problem and the initial–boundary value problem for the Degasperis–Procesi
equation have been studied extensively, such as in [37–45]. For example, the author established the local well-posedness to
the D–P equation with initial data u0 ∈ Hs(R), s > 3

2 on the circle [42] and on the line [43], and derived the precise blow-up
scenario and a blow-up result. The global existence of strong solutions and global weak solutions to the Degasperis–Procesi
equation was shown in [46,47]. Similar to the Camassa–Holm equation, the Degasperis–Procesi equation has not only
global strong solutions [48,46] but also blow-up solutions [48,46,49,50]. Apart from these, it has global entropy weak
solutions in L1(R)∩ BV (R) and L2(R)∩ L4(R), cf. [51] and references within. Recently, it has been demonstrated [52] that the
Degasperis–Procesi equation [53] also can be recast as a geodesic equation on Diff(S1), although in this case the connection
does not derive from an invariant metric [54]. The advantage of the Degasperis–Procesi equation in comparison with the
KdV equation lies in the fact that the Degasperis–Procesi equation has peaked solitons and models wave breaking (by wave
breaking we understand that the wave remains bounded while its slope becomes unbounded in finite time).

To the author’s best knowledge, there has been no research on the boundary stabilization of the viscous Camassa–Holm
equation through the inhomogeneous boundary control inputs. In the present paper, we would like to derive nonlinear
boundary control laws that achieve global asymptotic stability (in a very strong sense). We consider both the viscous and
the inviscid Camassa–Holm equation, using both higher order boundary control and Dirichlet boundary control.

2. Problem statement

We first consider the viscous Camassa–Holm equation, i.e. b = 2, α = 1, ε > 0 is a constant,

ut − utxx + 3uux − 2uxuxx − uuxxx − ε(u − uxx)xx = 0, (2.1)

issued from the initial condition u(x, 0) = u0 ∈ L2(0, 1). Our objective is to achieve set point regulation:

lim
t→∞

u(x, t) = Ud, ∀x ∈ [0, 1] (2.2)

where Ud is a constant, while keeping u(x, t) bounded for all (x, t) ∈ [0, 1] × [0,∞). Without loss of generality we assume
that Ud > 0. By defining the regulation error asw(x, t) = u(x, t)− Ud, we get the system

wt − wtxx + 3wwx + 3Udwx − 2wxwxx − wwxxx − Udwxxx − ε(w − wxx)xx = 0. (2.3)

Let y = w − wxx, Eq. (2.3) can be written as follows:

yt + 2ywx + 3Udwx + wyx − Udwxxx − εyxx = 0. (2.4)

Wewill approach the boundary control problem for Eq. (2.4) (or equivalently (2.3)) by both higher order boundary control

wtx(0, t) = ψ0, wtx(1, t) = ψ1, wxx(0, t) = ν0, wxx(1, t) = ν1, (2.5)

and Dirichlet boundary control

w(0, t) = ϕ0, w(1, t) = ϕ1, (2.6)

with boundary conditions

wx(0, t) = 0, wx(1, t) = 0, (2.7)

whereψ0, ψ1ν0, ν1 and ϕ0ϕ1 are scalar control inputs. The integrators separatingψ0 from ux|x=0 andψ1 from ux|x=1 can be
regarded as a part of actuator dynamics which prevent direct actuation via boundary values of ux.
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