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This paper discusses the large time behaviors of solutions for a class of incompressible third
grade fluid equations in R3. Using the Fourier splitting method of Schonbek, the authors
prove the upper and lower bounds of the time decay rate in L2 for the weak solutions. The
upper and lower bounds of decay rate are optimal in the sense that they coincide with the
upper and lower bounds of the decay rate of solutions to the heat equation.
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1. Introduction

Fluids of different type form an important class of non-Newtonian fluids. The fluids of grade n, introduced by Rivlin and
Ericksen [1], are the fluids for which the stress tensor is a polynomial of degree n in the first n Rivlin–Ericksen tensor defined
recursively by

A1(u) = A(u) = ∇u + (∇u)T ,

Ak+1(u) =
D
Dt

Ak(u)+ (∇u)TAk(u)+ Ak(u)∇u, k = 1, 2, . . . ,

where D
Dt =

∂
∂t + u×∇ denotes the material derivative and (∇u)T is the transposition of the Jacobian matrix ∇u. In [1], the

constitutive relation of a particular fluid of grade n is given by T = −pI + F(A1, A2, . . . , An), where I is the identity matrix
of order n and F is an isotropic polynomial of degree n.

There are some references on the existence, uniqueness and asymptotic behaviors of solutions for second and third grade
fluid equations, see e.g. [2–6] and the references therein. In [4], Busuioc and Iftimie studied the existence of solutions to the
following third grade fluid equations

∂tv + (u · ∇)v +


j

vj∇uj − ν1u = (α1 + α2)div

A2(u)


+ βdiv


|A(u)|2A(u)


− ∇p,

v = u − α11u,
div u = 0,
u(x, 0) = u0,

(1.1)
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in Rn(n = 2, 3), with the coefficients ν, α1, α2 and β satisfy the following hypotheses:

ν > 0, α1 > 0, β > 0, |α1 + α2| 6

24νβ.

Busuioc and Iftimie in [4] proved that Eq. (1.1) possesses a global solution if the initial value is in H2(Rn) (n = 2, 3). They
also established the uniqueness of solutions for Eq. (1.1) when n = 2.

Recently, Hamza and Paicu studied in [5] a particular case of the third grade fluids Eq. (1.1) in R3, where they assumed
α1 = 0. In this case, Eq. (1.1) become∂tu + (u · ∇)u − ν1u − αdiv


A2(u)


− βdiv


|A(u)|2A(u)


+ ∇p = 0,

div u = 0,
u(x, 0) = u0,

(1.2)

where we have denoted α2 by α. With the following assumptions on the coefficients:

β > 0 and |α| <

2νβ.

Hamza and Paicu proved the existence anduniqueness, aswell as the stability (when |α| <
√
νβ/2), of globalweak solutions

for Eq. (1.2) with natural regularity assumption on the initial data belonging to the energy space L2(R3). They also proved
that if the initial datum belongs to H1(R3), then the solution belongs to H1(R3) for any positive time and they gave a control
of the H1(R3) norm of the solution.

The goal of this paper is to investigate the time decay rate of weak solutions for Eq. (1.2) in R3. As far as we know, there
are no references concerning this aspect for the third grade incompressible fluids.Wewill prove the upper and lower bounds
of the decay rate in L2 for the weak solutions. Roughly speaking, if the initial value u0 ∈ L1(R3) ∩ L2(R3) and div u0 = 0,
then we can establish that the solution u(x, t) satisfies the following upper bound of decay rate:

∥u(x, t)∥ 6 c(1 + t)−3/4, t > 1. (1.3)

If the initial value u0 ∈ L1(R3) ∩ L2(R3) ∩ Rδ
κ and div u0 = 0, then we can prove that the solution u(x, t) satisfies the

following lower bound of decay rate:

∥u(x, t)∥ > c(1 + t)−3/4, for large t, (1.4)

where κ and δ are some positive constants and

Rδ
κ := {u| |u(ξ)| > κ for |ξ | 6 δ} (1.5)

is introduced by Schonbek [7] to describe the set of functions whose Fourier transform near the origin possesses a lower
bound.

We also prove that the above upper and lower bounds of decay rate are optimal in the sense that they coincide with the
upper and lower bounds of decay rate for the solutions of the following heat equations

∂tv = 1v,
v(x, 0) = u0.

(1.6)

Let v be a solution of Eq. (1.6). If u0(x) ∈ L1(R2) ∩ L2(R2) ∩ Rδ
κ , then combining the estimates of Schonbek [7] and the

Lp − Lq estimate (see e.g. [8–10]), we have

c1(1 + t)−3/4 6 ∥v(x, t)∥ 6 ∥u0∥L1(R3)(1 + t)−3/4, t > 0, (1.7)

where c1 is a positive constant depending on κ and δ. In fact, we can prove that

∥u(x, t)− v(x, t)∥ 6 c(1 + t)−1, t > 1, (1.8)

if the initial value u0 ∈ L1(R3) ∩ L2(R3) and div u0 = 0.
We should point out that the proof of this paper is greatly inspired from thework of Schonbek [7,11] for theNavier–Stokes

equations. In [7,11], Schonbek used the Fourier splitting method and some delicate analyses to prove the upper and lower
bounds of decay in L2 for the Leray–Hopf solutions of the Navier–Stokes equations. Later, this Fourier splitting method was
well extended and was combined with the Lp − Lq estimate (see e.g. [8–10]) to investigate the decay for the solutions of
partial differential equations from mathematical physics.

Nowadays, there are many works discussing the decay rate of solutions for nonlinear evolution equations. For example,
one can seeWiegner [12], Schonbek [13,14], Schonbek andWiegner [15], Zhang [16,17], Oliver and Titi [18], He and Xin [19],
Brandolese and Vigneron [20], Dong et al. [21,22], Han [23,24] for the Navier–Stokes equations; see Bae [25], Guo and
Zhu [26], Nečasová and Penel [27], Dong et al. [28,29] for the non-Newtonian fluid equations; see Liu [30], Wang et al. [31],
Li et al. [32], Brandolese and Schonbek [33] for the Boussinesq equations; seeWang and Yu [34], Dai et al. [35] for the liquid
crystals systems; see Schonbek et al. [36,37] for the MHD equations; see Niche and Schonbek [38] for the quasi-geostrophic
equations, and see Guo and Wang [39] for the heat equation, Navier–Stokes equations and Boltzmann equation, etc.
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