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a b s t r a c t

In this paper we consider the non-cutoff Boltzmann equation in the spatially inhomo-
geneous case. We prove the propagation of Gevrey regularity for the so-called smooth
Maxwellian decay solutions to the Cauchy problem of spatially inhomogeneous Boltzmann
equation, and obtain Gevrey regularity of order 1/(2s) in the velocity variable v and or-
der 1 in the space variable x. The strategy relies on our recent results for the spatially
homogeneous case [T.-F. Zhang and Z. Yin, Gevrey regularity of spatially homogeneous
Boltzmann equation without cutoff, J. Differential Equations 253 (4) (2012), 1172–1190.
http://dx.doi.org/10.1016/j.jde.2012.04.023]. Rather, we need much more intricate analy-
sis additionally in order to handle with the coupling of the double variables. Combining
with the previous result mentioned above, it gives a characterization of the Gevrey regu-
larity of the particular kind of solutions to the non-cutoff Boltzmann.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. The Boltzmann equation

In this paper we consider the Cauchy problem of the spatially inhomogeneous Boltzmann equation without angular
cutoff. It reads, with a T > 0, as the following equation,

ft(t, x, v) + v · ∇xf (t, x, v) = Q (f , f )(v), t ∈ (0, T ],
f (0, x, v) = f0(x, v),

(1.1)

for the density distribution function of particles f = f (t, x, v), which are located around position x ∈ T3 with velocity
v ∈ R3 at time t ≥ 0. The right-hand side of the above equation is the so-called Boltzmann bilinear collision operator acting
only on the velocity variable v:

Q (g, f ) =


R3


S2

B (v − v∗, σ )

g ′

∗
f ′

− g∗f

dσdv∗.

Above, we use the standard shorthand f = f (t, x, v), f∗ = f (t, x, v∗), f ′
= f (t, x, v′), f ′

∗
= f (t, x, v′

∗
). The relations

between the post- and pre-collisional velocities are described by the σ -representation, that is, for σ ∈ S2,

v′
=

v + v∗

2
+

|v − v∗|

2
σ , v′

∗
=

v + v∗

2
−

|v − v∗|

2
σ .
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Note that the collision process satisfies the conservation of momentum and kinetic energy, i.e.

v + v∗ = v′
+ v′

∗
, |v|

2
+ |v∗|

2
= |v′

|
2
+ |v′

∗
|
2.

The collision cross section B(z, σ ) is a given non-negative function depending only on the interaction law between par-
ticles. From a mathematical viewpoint, that is to say, B(z, σ ) depends only on the relative velocity |z| = |v − v∗| and the
deviation angle θ defined through the scalar product cos θ =

z
|z| · σ .

Without loss of generality, the cross section B is assumed to be of the form

B(v − v∗, cos θ) = Φ(|v − v∗|)b(cos θ), cos θ =
v − v∗

|v − v∗|
· σ , 0 ≤ θ ≤

π

2
,

where the kinetic factor Φ is given by

Φ(|v − v∗|) = |v − v∗|
γ ,

and the angular part b, with a singularity, satisfies

sin θb(cos θ) ∼ θ−1−2s, as θ → 0+,

for some 0 < s < 1.
We remark that if the inter-molecule potential is given by the inverse-power law U(ρ) = ρ−(p−1) (where p > 2), it holds

that γ =
p−5
p−1 and s =

1
p−1 . Generally, the cases γ > 0, γ = 0, and γ < 0 correspond to the so-called hard, Maxwellian,

and soft potential respectively. And the cases 0 < s < 1/2, 1/2 ≤ s < 1 correspond to the so-called mild singularity and
strong singularity respectively.

1.2. Review of non-cutoff theory in Gevrey spaces

Webeginwith a brief review for the non-cutoff theory of the Boltzmann equation.We refer to Villani’s reviewbook [1] for
the physical background and the mathematical theories of the Boltzmann equation. Furthermore, in the non-cutoff setting,
Alexandre gave more details in [2].

Our discussion is based on the following definition of Gevrey spaces Gs(Ω) on an open subset Ω j R3 (see [3], for
instance).

Definition 1.1. For 0 < s < +∞, we say that f ∈ Gs(Ω), if f ∈ C∞(Ω), and there exist C > 0,N0 > 0 such that

∥∂α f ∥L2(Ω) ≤ C |α|+1
{α!}

s, ∀α ∈ N3, |α| ≥ N0.

Note that the Gevrey scale measures regularity between analytic and C∞. More precisely, when s = 1, it is usual analytic
function. If s > 1, it is a Gevrey class function. And for 0 < s < 1, it is called an ultra-analytic function.

For the Cauchy problem of the Boltzmann equation in Gevrey classes, Ukai showed, in [4] in 1984, that there exists a
unique local solution for both spatially homogeneous and inhomogeneous cases, with the assumption on the cross section:B(|z|, cos θ)

 ≤ K(1 + |z|−γ ′

+ |z|γ )θ−n+1−2s, n is dimensionality,

(0 ≤ γ ′ < n, 0 ≤ γ < 2, 0 ≤ s < 1/2, γ + 6s < 2).

In particular, for the spatially inhomogeneous case, by introducing the norm of Gevrey space

∥f ∥δ,ρ1,ν1,ρ2,ν2 =


α,β

ρ
|α|

1 ρ
|β|

2

{α!}ν1{β!}ν2
∥eδ⟨v⟩

2
∂α
x ∂β

v f ∥L∞(Rn
x×Rn

v).

Ukai proved that, under some assumptions for ν and the initial datum f0(x, v), the Cauchyproblem (1.1) has a unique solution
f (t, x, v) for t ∈ (0, T ].

On the other hand, Desvillettes established in [5] the C∞ smoothing effect for solutions of the Cauchy problem in the
spatially homogeneous case, and conjectured the Gevrey smoothing effect. He also proved, without any assumptions on the
decay at infinity in v variables, the propagation of Gevrey regularity for solutions (see [6]).

In 2009Morimoto et al. considered in [7] theGevrey regularity for the linearized Boltzmann equation around the absolute
Maxwellian distribution, by virtue of the following mollifier:

Gδ(t,Dv) =
et⟨Dv⟩

1/ν

1 + δet⟨Dv⟩1/ν
, 0 < δ < 1.

We remark that the same operator was used in many related models such as the Fokker–Planck equation, Kac’s equation,
the Landau equation, and so on.
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