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a b s t r a c t

In the first part of this paper, after recalling how to solve inverse problems for deterministic
and random differential equations using the collage method, we switch to the analysis of
stochastic differential equations. Here inverse problems can be solved by minimizing the
collage distance in an appropriate metric space. In the second part, we develop a general
collage coding framework for inverse problems for boundary value problems. Although a
general inverse problem can be very complicated, via the Generalized Collage Theorem
presented in this paper, many such problems can be reduced to an optimization problem
which can be solved at least approximately. We recall some previous results by some of
the authors on the same topic, but we provide more numerical examples to analyze the
stability of the generalized collage method under perturbation of data. We then extend
these results to the case of diffusion equations. Finally, we show an application of this
methodology to a system of coupled stochastic differential equations which describes the
interaction between particles in a physical system.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Many inverse problems may be viewed in terms of the approximation of a target element u in a complete metric space
(X, d) by the fixed point ū of a contraction mapping T : X → X . In practical applications, from a family of contraction
mappings Tλ, λ ∈ Λ ⊂ Rn, one wishes to find the parameter λ̄ for which the approximation error d(u, ūλ) is as small as
possible. Thanks to a simple consequence of Banach’s fixed point theorem known as the ‘‘Collage Theorem’’, most practical
methods of solving the inverse problem for fixed point equations seek to find an operator T for which the collage distance
d(u, Tu) is as small as possible.

Theorem 1.1 (‘‘Collage Theorem’’ [1]). Let (X, d) be a complete metric space and T : X → X a contraction mapping with
contraction factor c ∈ [0, 1). Then for any u ∈ X,

d(u, ū) ≤
1

1 − c
d(u, Tu), (1)

where ū is the fixed point of T .
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One now seeks a contraction mapping T that minimizes the so-called collage error d(u, Tu)—in other words, a mapping
that sends the target u as close as possible to itself. This is the essence of the method of collage coding which has been the
basis of most, if not all, fractal image coding and compression methods.

In [2] (and subsequent works [3–9]), the authors showed how collage coding could be used to solve inverse problems for
systems of differential equations having the form

u̇ = f (t, u),
u(0) = u0,

(2)

when f is a polynomial and by reducing the problem to the corresponding Picard integral operator associated with it,

(Tu)(t) = u0 +

 t

0
f (s, u(s)) ds. (3)

Here we show how one can attack this problem in the general case when f belongs to L2. Let us consider the complete
metric space C([0, T ]) endowed with the usual d∞ metric and assume that f (t, x) is Lipschitz in the variable x, that is there
exists a K ≥ 0 such that |f (s, x1) − f (s, x2)| ≤ K |x1 − x2|, for all x1, x2 ∈ R. For simplicity we suppose that x ∈ R but the
same consideration can be developed for the case of several variables. Under these hypotheses T is Lipschitz on the space
C([−δ, δ] × [−M,M]) for some δ andM > 0.

Theorem 1.2 ([2]). The function T satisfies

∥Tu − Tv∥2 ≤ c∥u − v∥2 (4)

for all u, v ∈ C([−δ, δ] × [−M,M]) where c = δK.

Now let δ′ > 0 be such that δ′K < 1. In order to solve the inverse problem for (3) we take the L2 expansion of the function
f . Let {φi} be a basis of functions in L2([−δ′, δ′

] × [−M,M]) and consider

fλ(s, x) =

+∞
i=1

λiφi(s, x). (5)

Each sequence of coefficients λ = {λi}
+∞

i=1 then defines a Picard operator Tλ. Suppose further that each function φi(s, x) is
Lipschitz in xwith constants Ki.

Theorem 1.3 ([2]). Let K , λ ∈ ℓ2(R). Then

|fλ(s, x1)− fλ(s, x2)| ≤ ∥K∥2∥λ∥2|x1 − x2| (6)

for all s ∈ [−δ′, δ′
] and x1, x2 ∈ [−M,M] where ∥K∥2 =


+∞

i=1 K 2
i

 1
2 and ∥λ∥2 =


+∞

i=1 λ
2
i

 1
2 .

Given a target solution x, we now seek to minimize the collage distance ∥u − Tλu∥2. The square of the collage distance
becomes

∆2(λ) = ∥u − Tλu∥2
2

=

 δ

−δ

u(t)−

 t

0

+∞
i=1

λiφi(s, u(s))ds


2

dt (7)

and the inverse problem can be formulated as

min
λ∈Λ

∆(λ), (8)

whereΛ = {λ ∈ ℓ2(R) : ∥λ∥2∥K∥2 < 1}. To solve numerically this problem, let us consider the first n terms of the L2 basis;
in this case the previous problem can be reduced to:

min
λ∈Λ̃

∆̃2(λ) =

 δ

−δ

x(t)−

 t

0

n
i=1

λiφi(s, x(s))ds


2

dt, (9)

where Λ̃ = {λ ∈ Rn
: ∥λ∥2∥K∥2 < 1}. This is a classical quadratic optimization problem which can be solved by means

of classical numerical methods. Let ∆̃n
min be the minimum value of ∆̃ over Λ̃. This is a non-increasing sequence of numbers

(depending on n) and as shown in [10] it is possible to show that lim infn→+∞ ∆̃n
min = 0. This states that the distance between

the target element and the unknown solution of the differential equation can be made arbitrary small.
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