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a b s t r a c t

In this paper, we study the asymptotic behavior of solutions uε of the elliptic variational
inequality for the Laplace operator in domains periodically perforated by balls with radius
of size C0ε

α , C0 > 0, α ∈ (1, n
n−2 ], and distributed with period ε. On the boundary of

the balls, we have the following nonlinear restrictions uε ≥ 0, ∂νuε ≥ −ε−γ σ(x, uε),

uε


∂νuε + ε−γ σ(x, uε)


= 0, γ = α(n − 1) − n. The weak convergence of the solutions

uε to the solution of an effective problem is given. In the critical case α =
n

n−2 , the effective
equation contains a nonlinear termwhich has to be determined as a solution of a functional
equation. Furthermore, a corrector result with respect to the energy norm is proved.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we are considering variational inequalities arising e.g., in modeling diffusion of substances in a domain
with inclusions. It is assumed that nonlinear adsorption is taking place at the boundary of these inclusions. Here, we are
interested in the case where the number of inclusions is large, their distribution is periodical of period ε and the size of
each is very small of order εα . In the literature, these perforations are called small or tiny holes. On the other hand, we also
suppose that the process on the boundary is of order ε−γ , that means, we assume strong processes on the small inclusions.

Passing to the scale limit, effective equations are derived for the considered variational inequalities. Hereby, we consider
the range for the parameters α, and γ for which the adsorption process on the inclusion at the micro-scale gives rise to
an effective sink/source term in the macroscopic equation. It turns out that we have to distinguish between two cases. In
the first case, when α ∈


1, n

n−2


, and γ = α(n − 1) − n, the nonlinearity in the sink/source term has the same form as

the nonlinearity in the boundary condition of the ε-problem. However, the second case, when α =
n

n−2 = γ , is the more
interesting one. In this case, the nonlinearity in the sink/source term appearing in the effective equation has a different form
from the nonlinearity in the ε-problem, and has to be determined as a solution of a functional equation.

We are assuming balls as inclusions andwe concentrate on developingmethods needed for the derivation of the effective
model. More general inclusions are covered in a following investigation. The progress achieved in this paper consists in
treating variational inequalities for the considered nonlinear restrictions, and discussing different scalings in geometry and
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processes. More precisely, we study the asymptotic behavior of solutions uε of the elliptic variational inequality in domains
periodically perforated by balls with radius of size

C0ε
α, C0 > 0, α ∈


1,

n
n − 2


, (1)

which are distributed with period ε in a domainΩ . On the boundary of the balls, we have the following restrictions

uε ≥ 0, ∂νuε ≥ −ε−γ σ(x, uε), uε

∂νuε + ε−γ σ(x, uε)


= 0 (2)

with γ = α(n − 1) − n. We prove weak convergence of the solutions {uε} as ε → 0 to the solution of the homogenized
problem. Furthermore, we give corrector results with respect to the energy norm.

The literature on problems formulated in domains with small holes is very wide, and started with the works [1,2] (see
also [3]), where the Poisson equationwith homogeneous boundary conditions in a domainwith small holes was considered.
The corresponding problems for Neumann boundary conditions were treated e.g. in [4,5]. In [6–9] Poisson problems in
domains with small holes and mixed boundary conditions on the boundary of the inclusions were treated. Nonlinear
problems in domains with small holes were treated among others in [10–13]. Homogenization problems for variational
inequalities were considered in [14–19]. A recent development concerning the techniques for problems in domains with
small holes is given e.g. in [20,21] (see also the references therein), where the unfolding method is used to treat problems
in perforated domains. Concerning the problems in domains with holes of diameter ε, there is a huge literature available,
starting with the paper [22]. We mention here a few of them, like e.g. [23–31].

There are different methods used to derive homogenized (effective) models in the case of domains with small holes.
Many of them consist in constructing suitable extension operators (from the perforated, ε-dependent domains to a fixed
domain) and choosing test functions adapted to the structure of the underlying problem. An alternative approach is the
unfolding method, where the extension operators are not necessary. However, until now, this method was applied mainly
to linear problems.

The problem considered in the present paper, a variational inequality for the Laplace operator with nonlinear third type
boundary conditions, is a generalization of theproblems treated in [10,11],where the corresponding equationwithnonlinear
third type boundary condition was considered. In [10], the problem was treated by introducing auxiliary elliptic boundary
value problems, and the corresponding minimizing problems. Then the convergence of the sequence of minimizers was
shown. In [11], a different, more direct approach was developed. There test functions were introduced directly for the non-
stationary problem; a basic ingredient for these test functions were the test functions wε from [2]. In [6], where the case
of linear third type boundary conditions on the small holes was considered, epi-convergence methods for sequences of
functionals are used.

In the actual paper, we use a similar approach to [11]. We further generalize the test functions in order to deal with
nonlinear inequalities.

2. Setting of the problem

LetΩ be a bounded domain in Rn, n ≥ 3, with a smooth boundary ∂Ω and Y = (−1/2, 1/2)n. We denote by G0 the ball
of radius 1 with its center in the origin of coordinates. For a set B, and δ > 0, we denote by δB the set {x | δ−1x ∈ B}. Let
ε > 0 be a small, positive parameter, and set Ωε = {x ∈ Ω | ρ(x, ∂Ω) > 2ε}. For aε = C0ε

α , where α ∈ (1, n/(n − 2)], and
C0 is a positive constant, we define

Gε =


j∈Υε

(aεG0 + εj) =


j∈Υε

Gj
ε,

where Υε = {j ∈ Zn
: (aεG0 + εj) ∩ Ωε ≠ ∅}, and |Υε| ∼= dε−n, d = const > 0,Zn is the set of vectors z with integer

components. Furthermore, let Y j
ε = εY + εj, and note that G

j
ε ⊂ Y

j
ε and the center of Gj

ε coincides with the center of the
cube Y j

ε . We set

Ωε = Ω \ Gε, Sε = ∂Gε, ∂Ωε = ∂Ω ∪ Sε.

InΩε we consider the following problem: Find uε ∈ Kε , such that the following variational inequality is satisfied for all
v ∈ Kε:

Ωε

∇uε∇(v − uε)dx + ε−γ


Sε
σ(x, uε)(v − uε)ds ≥


Ωε

f (v − uε)dx. (3)

Here, the set Kε is defined by

Kε = {g ∈ H1(Ωε, ∂Ω) : g ≥ 0 a.e. on Sε}, (4)
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