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a b s t r a c t

We consider the reaction–diffusion equation describing the population with the logistic
type of growth and diffusion stipulated by the carrying capacity K , which leads to the term
D∆(u/K), where u is the population level. In the logistic model the introduction of the
standard diffusion term ∆u (incorporated with the zero Neumann boundary conditions)
leads to the situation when the population tends to be equally distributed over the
space available, even if the carrying capacity K(x) varies significantly with location. The
strategy with a K -driven diffusion is compared to the model with standard diffusion, and
we demonstrate that for two competing populations with two different strategies, the
equilibrium where only the species which follows K -driven diffusion survives, is globally
asymptotically stable.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Introducing spatial distribution of species in mathematical description of population dynamics aims to explain certain
real world phenomena such as stocking and pattern formation. The simplest models of population growth are either
ordinary differential or difference equations; however, incorporating diffusion in these models aims to reveal evolutionary
mechanisms responsible for population dispersal. Generally, the addition of a regular D1u diffusion term leads to the
uniform limit free distribution asD → ∞, which is not feasible for systemswhere the carrying capacity is space-dependent.
Moreover, it brings the conclusion [1] that in the competition of several populations which differ by the dispersion speed
only, the slowest population always wins. There were several attempts to model systems with non-uniformly distributed
resources, for example, to introduce the advection along an environmental gradient [2,3]. Usually the zero Neumann
boundary conditions were considered (assuming that the population is closed and that there is no flux through the isolated
boundaries, or that immigration to the domain is compensated by emigration).

In [4,5] we introduced an alternative type of diffusion when ultimately the population does not tend to have a uniform
distribution over the domain but the uniform per capita available resources. This means that not u but u/K diffuses. In
particular, together with the logistic growth law, this leads to the following initial–boundary value problem:

∂u(t, x)
∂t

= D∆

u(t, x)
K(x)


+ r(x)u(t, x)


1 −

u(t, x)
K(x)


, t > 0, x ∈ Ω, (1.1)

with the Neumann boundary condition

∂
 u
K


∂n

= 0, t > 0, x ∈ ∂Ω, (1.2)
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and the initial condition

u(0, x) = u0(x), x ∈ Ω. (1.3)

The above system models the dynamics of a single population with a diffusion strategy corresponding to the term
D∆(u/K), where K(x) is the carrying capacity of the environment. In contrast to the ‘‘classical’’ diffusion D1u, the term
D∆(u/K)means that the population moves from the regions with lower to higher per capita available resources.

The purpose of the present paper is to consider two populations competing for the resources — one having the proposed
carrying capacity driven diffusion strategy, and the other one dispersing randomly. This approach has been used, for
example, in [1,3,6]. Dockery et al. [1] considered n species competing for the resources. The species differ only by their
diffusion coefficient and their diffusion strategy is a random dispersal. The main result is that the phenotype with the
smallest diffusion coefficient has an evolutionary advantage in the sense that the only stable equilibrium is the one where
only this phenotype survives. In [3] the authors consider two competing species, one of which disperses only by random
diffusion, and the second one by both random diffusion and advection along an environmental gradient. The diffusion
coefficients were assumed to be constant but did not have to be equal for both species. Depending on the relation between
the diffusion coefficients and the coefficient of an advection term, results on stability of different equilibrium states were
obtained in [3]. In [6] the same authors defined an ideal-free distribution strategy by introducing a diffusion term similar
to the one in (1.1). Then they considered two competing species, one assuming the proposed diffusion strategy, and the
strategy of the second one differs by a small perturbation function. Furthermore, the authors make a conclusion that if the
perturbation is small enough, the phenotype with an ideal-free distribution strategy always survives while the second one
extincts. This means that diffusion leads to evolutionary disadvantage which is intuitively hard to interpret.

In the present paper, we demonstrate that the population which disperses in accordance with the resources distribution
has an evolutionary advantage over the one with the random dispersal, independently of the values of the diffusion
coefficients: they can coincide or be different for the two populations. In contrast to many publications where only local
stability is proved while global convergence is justified numerically, we present a rigorous proof of the global asymptotic
stability of the equilibrium forwhich the populationwith the randomdispersal extincts, while the other survives. Moreover,
we illustrate by an analytical example that for time-independent carrying capacity, randomdiffusion leads to a lower average
population level. However, this cannot be extended to the case of time-dependent carrying capacity, as another example
demonstrates. Really, if available resources are quickly changing, the movement to the place where available resources are
highest at the moment may not be the best strategy.

We consider the following system of parabolic equations with the Neumann boundary conditions:

∂u(t, x)
∂t

= D∆

u(t, x)
K(x)


+ r(x)u(t, x)


1 −

u(t, x)+ v(t, x)
K(x)


, t > 0, x ∈ Ω,

∂v(t, x)
∂t

= ∇ · d(x)∇v(t, x)+ r(x)v(t, x)

1 −

v(t, x)+ u(t, x)
K(x)


, t > 0, x ∈ Ω,

∂(u/K)
∂n

= d(x)
∂v

∂n
= 0, x ∈ ∂Ω

(1.4)

with the initial conditions

u(0, x) = u0(x), v(0, x) = v0(x). (1.5)

We assume that K(x) is in the class C1+α(Ω), K(x) > 0 for any x ∈ Ω , the growth rate r(x) is positive and continuous in
Ω . For the diffusion coefficient of the second species with a regular diffusion, we assume d(x) > 0 inΩ and d(x) ∈ C1(Ω).
Ω is an open nonempty bounded domainwith ∂Ω ∈ C2+α, 0 < α < 1. For detailed definitions of Hölder spaces see e.g. [7].

Remark 1.1. The diffusion coefficient d(x) for the second species with the density v(t, x) is in general space-dependent. To
match the diffusion coefficients for both species we need to put d(x) = D/K(x).

Our approach to establishing an evolutionary advantage is to study the stability of so-called semi-trivial equilibria of the
system (1.4), which are (ũ, 0), (0, ṽ), when only one species survives [1,3,6]. It is easy to see that the functions ũ and ṽ are
solutions of the following elliptic boundary value problems

D∆


ũ(x)
K(x)


+ r(x)ũ(x)


1 −

ũ(x)
K(x)


= 0, x ∈ Ω, (a)

∂(ũ/K)
∂n

= 0, x ∈ ∂Ω (b)
(1.6)

and 
∇ · d(x)∇ṽ(x)+ r(x)ṽ(x)


1 −

ṽ(x)
K(x)


= 0, x ∈ Ω, (a)

∂ṽ

∂n
= 0, x ∈ ∂Ω, (b)

(1.7)

respectively.
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