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a b s t r a c t

We propose a reliable method for constructing a directed weighted complex network
(DWCN) from a time series. Through investigating the DWCN for various time series, we
find that time series with different dynamics exhibit distinct topological properties. We
indicate this topological distinction results from the hierarchy of unstable periodic orbits
embedded in the chaotic attractor. Furthermore,we associate different aspects of dynamics
with the topological indices of the DWCN, and illustrate how the DWCN can be exploited
to detect unstable periodic orbits of different periods. Examples using time series from
classical chaotic systems are provided to demonstrate the effectiveness of our approach.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Quite recently, the approach of complex networks has been incorporated into the study of a dynamical process underlying
a given experimental time series of time dependent complex systems [1–17], motivated by the fact that complex networks
are capable of modeling and characterizing many types of systems in nature and technology that contain a large number of
components interactingwith each other in a complicatedmanner [18–32]. Such an approach has already been implemented
successfully, for instance, for data from climate system [33], multi-phase flow [34,35], human gait [36] and human brain
system [37]. Despite the existing results, significant challenges in applying complex network theory to the investigation of
complex experimental time series remain. For example, characterizing and detecting the unstable periodic orbits (UPOs) in
terms of a complex network approach is still a challenging problem of continuing interest.

In this paper, we propose a unique directed weighted complex network (DWCN) for characterizing complicated dynamics
from time series motivated by the consideration that different nodes and links may play distinct functional roles in a
complex network. Specifically, given a set of time series from various dynamic systems, our first step is to construct a
directed weighted complex network using a heuristic theory for determining the threshold. We then associate different
aspects of chaotic dynamics with the topological indices of the DWCN and demonstrate that the DWCN can be exploited
to detect unstable periodic orbits of low periods. Examples using time series from classical chaotic systems are provided to
demonstrate the effectiveness of our approach.

2. Construction of a directed weighted complex network

We start from construction of the DWCN. Our first step is phase space reconstruction. Given a time series z(it) (i =

1, 2, . . . ,M), where t is the sampling interval and M is the sample size, we construct a sequence of phase space vectors
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according to the standard delay-coordinate embedding method [38–40]:

−→
Xk = {xk(1), xk(2), . . . , xk(m)}

= {z(kt), z(kt + τ), . . . , z(kt + (m − 1)τ )} (1)

where τ is the delay time, m is the embedding dimension, k = 1, 2, . . . ,N , and N = M − (m − 1)τ/t is the total number
of vector points in the reconstructed phase space. To construct a network, we then regard each vector point as a node and
use the phase space distance to determine the edges. Given two vector points

−→
Xi and

−→
Xj (i > j), the phase space distance is

defined to be

dij =

m−
n=1

Xi(n) − Xj(n)
 (2)

where Xi(n) = z(i ∗ t + (n − 1)τ ) is the nth element of
−→
Xi . This generates, for all nodes (vector points) in the network, a

distance matrix D = (dij), where i > j. By choosing a critical threshold value rc , we obtain the connections of the network:
an edge connecting node i and j (i > j) exists if |dij| ≤ rc ; while there is no edge between i and j if |dij| > rc . We regard
the time (i − j) ∗ t as the weight of an edge that connected nodes i and j and the edge direction is from node i to j. Finally,
we obtain the weight matrix W = (wij), where wij = 0 means node i and j are not connected; otherwise, wij ≠ 0 implies
that an edge from node i to j exists and the edge weight is wij = (i − j) ∗ t . The topology of the reconstructed DWCN is
determined entirely byW.

A key issue in extracting DWCN from time series is then the choice of the critical threshold rc . In this paper, we exploit
the normalized maximum size of subgraph to determine the critical threshold. Take the Tent map

f (x) =


2x, if x < 1/2
2(1 − x), if x ≥ 1/2 (3)

as an example; here, we theoretically demonstrate how to properly select the critical threshold. The locations of the periodic
orbits of the Tent map can be obtained explicitly. At each iteration, the map has two line segments of slope 2 and −2 in the
unit square of the plane xn+1 versus xn. The pth-iterated map has 2p line segments in the unit square. Fixed points of the
pth-iterated map, which contain all periodic orbits of period p, are located at cross points of these 2p line segments with the
line xn+1 = xn. Thus, we have the following set of points that belong to different periodic orbits of period p:

Xp(j) =


2j/(2P

+ 1), if j = 1, 2, 3, . . . , 2P−1

2j/(2P
− 1), if j = 1, 2, 3, . . . , 2P−1

− 1.
(4)

Starting with one such point, one can obtain the remaining p − 1 points on the orbit by iterating the Tent map. We obtain
all the orbit points from period 1–11 considering the fact that the chaotic dynamics mainly focus on the unstable periodic
orbits of low periods. Then we calculate the minimum distance from the point i on the orbit ql of period Pl to the points of
other orbits

LqlPl(i) = min


Xql
Pl
(i) − Xqk

Pk
(j)

2
+


f (Xql

Pl
(i)) − f (Xqk

Pk
(j))

2
1/2


Pk = 1, 2, . . . , 11
qk = 1, 2, . . . , 2Pk − 1
(Pk, qk) ≠ (Pl, ql)

 (5)

where 2pk−1
−1 is the number of orbit of period Pk. L

ql
Pl
(i) is theminimumdistance for point i. Thenwe calculate theminimum

distance for all points on the orbits of different periods and select the maximum value of the obtained minimum distances

rc = max

Lqlpl(i)| Pl = 1, 2, . . . , 11 ql = 1, 2, . . . , 2Pl − 1 i = 1, 2, . . . , Pl


= 0.00155 (6)

as the network critical threshold in that it is the smallest one that can guarantee the skeleton of the network. So, we have
theoretically calculated the critical threshold from the equations for Tent map system.

To cast light into the time series of length 8000 from the Tent map, we now carry out the normalized maximum size of
subgraph (NMSS) distribution to determine the critical threshold, as follows. We reconstruct the network and study the
distributions of NMSS with respect to the variation in threshold. For a network from time series, the increase of NMSS will
reach the maximum rate when the threshold approaches the smallest value that can preserve the network skeleton. By
analysis, we find that when rc approaches 0.00175, the NMSS reaches maximum increase rate. Thus, the rc = 0.00175
is the critical threshold for the Tent map and the result is in agreement with that obtained from theoretical calculation
rc = 0.00155. Furthermore, we use the NMSS distribution study the 2xmod 1map and the results indicate that, consistently
with the one theoretically calculated from equations rc = 0.0021, the critical threshold obtained from NMSS distribution
is rc = 0.00205, confirming that the NMSS distribution could be a faithful approach for determining the network critical
threshold.
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