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a b s t r a c t

We study the existence and a turnpike property of solutions of a discrete-time control
system with discounting and with a compact metric space of states. In our recent work for
this discrete-time optimal control system without discounting we establish the turnpike
property and show that it is stable under perturbations of an objective function. In the
present paper we show that this turnpike property together with its stability also hold for
the system with discounting.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let (X, ρ) be a compact metric space and Ω be a nonempty closed subset of X × X .
A sequence {xt}∞t=0 ⊂ X is called a program if (xt , xt+1) ∈ Ω for all integers t ≥ 0. A sequence {xt}

T2
t=T1

⊂ X where
integers T1, T2 satisfy 0 ≤ T1 < T2 is called a program if (xt , xt+1) ∈ Ω for all integers t ∈ [T1, T2 − 1].

In this paper we consider the problem

T−1
i=0

vi(xi, xi+1) → max (P)

s.t. {(xi, xi+1)}
T−1
i=0 ⊂ Ω, x0 = z,

where T is a natural number, z ∈ X and vt : Ω → R1, t = 0, . . . , T − 1 are bounded functions. This discrete-time optimal
control system describes a general model of economic dynamics [1–9], where the set X is the space of states, vt is a
utility function and vt(xt , xt+1) evaluates consumption at moment t . The interest in discrete-time optimal problems of
type (P) also stems from the study of various optimization problems which can be reduced to it, e.g., tracking problems
in engineering [10], the study of Frenkel–Kontorova model related to dislocations in one-dimensional crystals [11,12] and
the analysis of a long slender bar of a polymeric material under tension in [13]. Optimization problems of the type (P) with
Ω = X × X were considered in [14,15,6].

We are interested in a turnpike property of the approximate solutions of (P) which is independent of the length of the
interval T , for all sufficiently large intervals. To have this propertymeans, roughly speaking, that the solutions of the optimal
control problems are determined mainly by the cost functions vt , and are essentially independent of T and z. Turnpike
properties are well known in mathematical economics. The term was first coined by Samuelson in 1948 (see [5]) where he
showed that an efficient expanding economy would spend most of the time in the vicinity of a balanced equilibrium path
(also called a von Neumann path).
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It should be mentioned that the study of the existence and the structure of solutions of optimal control problems
defined on infinite intervals and on sufficiently large intervals has recently been a rapidly growing area of research. See,
for example, [16–27] and the references mentioned therein.

In the classical turnpike theory [1–4] the space X is a compact convex subset of a finite-dimensional Euclidean space,
the set Ω is convex and vt = v for all integers t ≥ 0, where the function v is strictly concave. Under these assumptions
the turnpike property can be established and the turnpike x̄ is a unique solution of the maximization problem v(x, x) →

max, (x, x) ∈ Ω . In this situation it is shown that for each program {xt}∞t=0 either the sequence {
T−1

t=0 v(xt , xt+1) −

Tv(x̄, x̄)}∞T=1 is bounded (in this case the program {xt}∞t=0 is called (v)-good) or it diverges to −∞. Moreover, it is also
established that any (v)-good program converges to the turnpike x̄. In the sequel this property is called as the asymptotic
turnpike property.

In [7,8] we studied problem (P) with vt = v for all integers t ≥ 0, where v : Ω → R1 is a bounded function, and showed
that the turnpike property follows from the asymptotic turnpike property. More precisely, we assumed that any (v)-good
program converges to a unique solution x̄ of the problem v(x, x) → max, (x, x) ∈ Ω and showed that the turnpike property
holds and x̄ is the turnpike. Note that we do not use convexity (concavity) assumptions. In [9] we showed that the turnpike
property established in [7,8] is stable under perturbations of the objective function v.

In the present paper we show that the turnpike property together with its stability established in [7–9] also hold for the
model with discounting.

In particular, the turnpike property holds for solutions of problem (P) with vt = β tu, t = 0, 1, . . . , where β ∈ (0, 1] and
1 − β is small enough and u is close enough to v in the topology of the uniform convergence on Ω , where v is a bounded
function on Ω which possesses the asymptotic turnpike property.

Let (X, ρ) be a compact metric space and Ω be a nonempty closed subset of X × X . Denote by M the set of all bounded
functions u : Ω → R1. For each w ∈ M set

∥w∥ = sup{|w(x, y)| : (x, y) ∈ Ω}. (1.1)

For each x, y ∈ X , each integer T ≥ 1 and each u ∈ M set

σ(u, T , x) = sup


T−1
i=0

u(xi, xi+1) : {xi}Ti=0 is a program and x0 = x


, (1.2)

σ(u, T , x, y) = sup


T−1
i=0

u(xi, xi+1) : {xi}Ti=0 is a program and x0 = x, xT = y


, (1.3)

σ(u, T ) = sup


T−1
i=0

u(xi, xi+1) : {xi}Ti=0 is a program


. (1.4)

(Here we use the convention that the supremum of an empty set is −∞ and the sum over empty set is zero.)
For each x, y ∈ X , each pair of integers T1, T2 satisfying 0 ≤ T1 < T2 and each sequence {ut}

T2−1
t=T1

⊂ M set

σ({ut}
T2−1
t=T1

, T1, T2, x) = sup


T2−1
t=T1

ut(xt , xt+1) : {xt}
T2
t=T1

is a program and xT1 = x


, (1.5)

σ({ut}
T2−1
t=T1

, T1, T2, x, y) = sup


T2−1
i=T1

ut(xt , xt+1) : {xt}
T2
t=T1

is a program and xT1 = x, xT2 = y


, (1.6)

σ({ut}
T2−1
t=T1

, T1, T2) = sup


T2−1
t=T1

ut(xt , xt+1) : {xt}
T2
t=T1

is a program


. (1.7)

Assume that v ∈ M is an upper semicontinuous function. Since in [7,8] we assume that objective functions are defined
on the set X × X in order to apply their results we set v(x, y) = −∥v∥ − 1 for all (x, y) ∈ (X × X) \ Ω .

We suppose that there exist x̄ ∈ X and a constant c̄ > 0 such that the following assumptions hold.
(A1) (x̄, x̄) is an interior point of Ω (there is ϵ > 0 such that {(x, y) ∈ X × X : ρ(x, x̄), ρ( y, x̄) ≤ ϵ} ⊂ Ω) and v is

continuous at (x̄, x̄).
(A2) σ(v, T ) ≤ Tv(x̄, x̄) + c̄ for all integers T ≥ 1.

It is easy to see that for each natural number T and each program {xt}Tt=0

T−1
t=0

v(xt , xt+1) ≤ σ(v, T ) ≤ Tv(x̄, x̄) + c̄. (1.8)

Inequality (1.8) implies the following result.
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