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a b s t r a c t

A new deterministic model for the transmission dynamics of two strains of influenza is
designed and used to qualitatively assess the role of cross-immunity on the transmission
process. It is shown that incomplete cross-immunity could induce the phenomenon of
backward bifurcation when the associated reproduction number is less than unity. The
model undergoes competitive exclusion (where Strain i drives out Strain j to extinction
whenever R0i > 1 > R0j; i, j = 1, 2, i ≠ j). For the case where infection with one
strain confers complete immunity against infection with the other strain, it is shown that
the disease-free equilibrium of the model is globally-asymptotically stable whenever the
reproduction number is less than unity. In the absence of cross-immunity, the model can
have a continuum of co-existence endemic equilibria (which is shown to be globally-
asymptotically stable for a special case).When infectionwith one strain confers incomplete
immunity against the other, numerical simulations of the model show that the two strains
co-exist, with Strain i dominating (but not driving out Strain j), whenever R0i > R0j > 1.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

One of the important problems inmathematical epidemiology is the study of the transmission dynamics of diseases with
multiple strains in the presence of partial or complete immunity. Consequently, themathematicalmodeling of diseaseswith
multiple pathogen strains, such as dengue fever, HIV/AIDS, influenza, malaria andWest Nile virus, has received considerable
attention (see, for instance, [1–11] and some of the references therein). These studies have, in general, focused on the
determination of threshold condition(s) for the co-existence of the strains, as well as the evaluation of the role of cross-
immunity (defined as a scenario where infection with one strain confers partial or complete protection against infection
with another strain) in the transmission dynamics of the disease strains.

In a multi-strain dynamics situation, infection by one or more of the strains may modify the sensitivity to infection by
the other strains [4,7–9,12]. Some of the main questions of epidemiological interest, in the studies of modeling multi-strain
dynamics, are:
(i) which strain(s) will dominate in the long run (i.e., does competitive exclusion phenomenon occurs)?
(ii) under what conditions will the strains co-exist?
(iii) what is the effect of cross-immunity (partial or complete) on the multi-strain dynamics?

These questions could be addressed using the threshold quantity known as the basic reproduction number of the disease
[6,13,14], which represents the average number of secondary cases generated by a typical infected individual in a completely

∗ Corresponding author.
E-mail address: gumelab@cc.umanitoba.ca (A.B. Gumel).

1468-1218/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.nonrwa.2012.10.003

http://dx.doi.org/10.1016/j.nonrwa.2012.10.003
http://www.elsevier.com/locate/nonrwa
http://www.elsevier.com/locate/nonrwa
mailto:gumelab@cc.umanitoba.ca
http://dx.doi.org/10.1016/j.nonrwa.2012.10.003


S.M. Garba et al. / Nonlinear Analysis: Real World Applications 14 (2013) 1384–1403 1385

susceptible population. Earlier studies has estimated that the reproduction number of the 1918–1919 influenza pandemic
and other seasonal strains of influenza ranged between 1.5 and 5.4 [4,9,15–20].

Using an SIQR deterministic model for the dynamics of two strains of influenza in the presence of isolation
of symptomatic cases, Nuno et al. [7] showed that cross-immunity and host isolation could induce sustained peri-
odic oscillations. Bremermann and Thieme [21] show the phenomenon of competitive exclusion (where the strain
with the largest reproduction number persists and eliminates the remaining strains) in a simple model with mul-
tiple strains (similar results were obtained in [8,22–24]). Gumel [9] shows co-existence of two strains (avian and
mutant) of influenza when their reproduction numbers exceed unity using a model for the transmission dynamics
of avian and human influenza strains in the presence of isolation (the model in [9] does not undergo competitive
exclusion).

The aim of this study is to rigorously assess the role of cross-immunity on the transmission dynamics of two strains of
influenza in a population. To achieve this objective, a new deterministic model (which extends the model in [7]) will be
designed.

The paper is organized as follows. The extended model is formulated in Section 2 and analyzed in Section 3.

2. Formulation of a mathematical model

The model is based on the transmission dynamics of two strains of influenza. The total population at time t , denoted by
N(t), is subdivided into susceptible (S(t)); exposed to strain i (i = 1, 2) (Ei); infectious with strain i (Ii); recovered from
strain i (Ri); recovered from strain i and exposed to strain j (i, j = 1, 2 i ≠ j) (Eij); recovered from strain i and infectious with
strain j (Iij); and individuals recovered from infection with both strains (M), so that

N(t) = S(t) + E1(t) + I1(t) + R1(t) + E2(t) + I2(t) + R2(t) + E12(t) + I12(t) + E21(t) + I21(t) + M(t).

The model to be considered is given by the following deterministic system of non-linear differential equations (where a dot
represents differentiation with respect to t; and all associated parameters are non-negative for all t ≥ 0):
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where Π is the recruitment rate into the community, ξ is the rate of loss of natural immunity by recovered individuals,
βi (where i = 1, 2 here and elsewhere below) is the infection rate with strain i, βij (i, j = 1, 2; i ≠ j) represents the
transmission rate for individuals who recovered from strain i but exposed to strain j and µ is the natural death rate. The
modification parameters ηi < 1 accounts for the assumed reduction of exposed individuals (those in the Ei classes) in
relation to infectious individuals (in the Ii classes); the parameters ηij are similarly defined.

Furthermore, σi is the transition rate of individuals exposed with strain i (i.e., those in the Ei class) to the corresponding
infectious (Ii) class (the parameters σij are similarly defined). The parameters γi and δi represent, respectively, the recovery
rates and disease-induced death rate of individuals infected with strain i (the parameters γij and δij are defined similarly).
The modification parameters 0 ≤ θi ≤ 1 account for the assumed reduction of susceptibility to strain j of individuals who
recovered from strain i (i.e., 0 ≤ θi ≤ 1) captures the cross-immunity of individuals who recovered from one strain against
acquiring infection with the other. These parameters are described in Table 1, and a flow diagram of the model is depicted
in Fig. 1.
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