
Nonlinear Analysis: Real World Applications 14 (2013) 1477–1486

Contents lists available at SciVerse ScienceDirect

Nonlinear Analysis: Real World Applications

journal homepage: www.elsevier.com/locate/nonrwa

Multiple solutions for the nonhomogeneous Kirchhoff equation on RN✩

Shang-Jie Chen a, Lin Li b,∗
a School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, PR China
b School of Mathematics and Statistics, Southwest University, Chongqing 400715, PR China

a r t i c l e i n f o

Article history:
Received 1 June 2012
Accepted 11 October 2012

Keywords:
Kirchhoff equation
Nonhomogeneous
Superlinear
Ekeland’s variational principle
Mountain Pass Theorem
Variational methods

a b s t r a c t

In this paper we study the following nonhomogeneous Kirchhoff equation

−


a + b


RN

|∇u|2dx

∆u + V (x)u = f (x, u)+ h(x), in RN ,

where f satisfies the Ambrosetti–Rabinowitz type condition. Under appropriate assump-
tions on V , f and h, the existence of multiple solutions is proved by using the Ekeland’s
variational principle and the Mountain Pass Theorem in critical point theory.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction and main results

This paper was motivated by some works that had appeared in recent years concerning the following Kirchhoff-type
problem

−


a + b


Ω

|∇u|2dx

1u = g(x, u), inΩ, (1)

whereΩ ⊂ RN is a smooth domain, a > 0, b ≥ 0 and u satisfies some initial or boundary condition.
The problem (1) is related to the stationary analogue of the Kirchhoff equation

utt −


a + b


Ω

|∇xu|2dx

∆xu = g(x, u) (2)

which was proposed by Kirchhoff in 1883 (see [1]) as a generalization of the well-known d’Alembert’s wave equation

ρ
∂2u
∂t2

−


P0
h

+
E
2L

 L

0

∂u∂x
2 dx


∂2u
∂x2

= g(x, u)

for free vibrations of elastic strings. Kirchhoff’s model takes into account the changes in length of the string produced by
transverse vibrations. Here, L is the length of the string, h is the area of the cross section, E is the Young modulus of the
material, ρ is the mass density and P0 is the initial tension.
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In [2], it was pointed out that the problem (2) models several physical systems, where u describes a process which
depends on the average of itself. Nonlocal effect also finds its applications in biological systems. A parabolic version of Eq. (1)
can, in theory, be used to describe the growth andmovement of a particular species. Themovement, modeled by the integral
term, is assumed to be dependent on the energy of the entire system with u being its population density. Alternatively,
the movement of a particular species may be subject to the total population density within the domain (for instance, the
spreading of bacteria) which gives rise to equations of the type ut − a(


Ω
udx)1u = h. Some early classical studies of

Kirchhoff’s equation were those of Bernstein [3] and Pohoz̃aev [4]. However, Eq. (2) received great attention only after that
Lions [5] proposed an abstract framework for the problem. Some interesting results for problem (2) can be found in [6–8]
and the references therein.

Some interesting studies by variational methods can be found in [2,9–22] for Kirchhoff-type problem (1), they consider
in a bounded domain ofΩ ⊂ RN . Very recently, some authors had studied the Kirchhoff equation on the whole space RN . Jin
and Wu [23] obtained the existence of infinitely many radial solutions for problem (1) in RN using the Fountain Theorem.
In [24], Wu gets four new existence results for nontrivial solutions and a sequence of high energy solutions for problem (1)
in RN which was obtained by using the Symmetric Mountain Pass Theorem. In [25], Azzollini, d’Avenia and Pomponio get
a multiplicity result concerning the critical points of a class of functionals involving local and nonlocal nonlinearities, then
they apply their result to the nonlinear elliptic Kirchhoff equation (1) in RN assuming that the local nonlinearity satisfies
the general hypotheses introduced by Berestycki and Lions [26]. He and Zou [27] study the existence, multiplicity and
concentration behavior of positive solutions for the nonlinear Kirchhoff type problem. They relate the number of solutions
with the topology of the set. Recently, Nie and Wu [28] have studied a Schrödinger–Kirchhoff-type equation with radial
potential, andmultiplicity of nontrivial solutionswere obtained by theMountain Pass Theoremand the symmetricMountain
Pass Theorem. In [29], Alves and Figueiredo study a periodic Kirchhoff equation in RN , they get the nontrivial solution when
the nonlinearity is in subcritical case and critical case. Liu andHe [30] getmultiplicity of high energy solutions for superlinear
Kirchhoff equations in R3.

In the same spirit of [25,23,24,27–30], we study a nonhomogeneous Kirchhoff equation on the whole space RN , namely
we consider the problem

−


a + b


RN

|∇u|2dx

1u + V (x)u = f (x, u)+ h(x), in RN . (3)

In the sense, the problem turns out to be a generalization of the well know nonhomogeneous Schrödinger equation:

−1u + V (x)u = f (x, u)+ h(x), in RN .

In this paper, we are interested in looking formultiple solutions of the problem (3). Unlike [23,28,29], we consider a Bartsch-
type potential. To this end, we make the following assumptions.

(v1) V ∈ C(RN ,R) satisfies infx∈RN V (x) ≥ a1 > 0, where a1 > 0 is a constant. Moreover, for every M > 0,
meas


{x ∈ RN

: V (x) ≤ M}

< ∞, where meas denote the Lebesgue measure in RN .

(f1) f ∈ C(RN
× R,R) and, for some 2 < p < 2∗

= 2N/(N − 2), a2 > 0,

|f (x, z)| ≤ a2(1 + |z|p−1),

for a.e. x ∈ RN and all z ∈ R.
(f2) There exists µ > 4 such that

µF(x, z) := µ

 z

0
f (x, y)dy ≤ zf (x, z),

for every x ∈ RN and all z ∈ R.
(f3) f (x, z)/z → 0, as z → 0, uniformly for x ∈ RN .
(f4)

inf
x∈RN ,|z|=1

F(x, z) > 0.

Before stating our main results, we give several notations. Define the function space

H1(RN) :=

u ∈ L2(RN) : |∇u| ∈ L2(RN)


with the usual norm

∥u∥H1 :=


RN


|∇u|2 + u2


dx
 1

2

.

Let

E :=


u ∈ H1(RN) :


RN


|∇u|2 + V (x)u2 dx < ∞


.
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