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a b s t r a c t

We consider a two-dimensional nonstationary Navier–Stokes shear flow with a subdif-
ferential boundary condition on a part of the boundary of the flow domain, namely, with a
boundary driving subject to the Tresca law. There exists a unique global in time solution of
the considered problem which is governed by a variational inequality. Our aim is to prove
the existence of a global attractor of a finite fractional dimension and of an exponential
attractor for the associated semigroup. We use the method of l-trajectories. This research
is motivated by a problem from lubrication theory.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Remarking on future directions of research in the field of contact mechanics, in their recent book [1], the authors wrote:
‘‘The infinite-dimensional dynamical systems approach to contact problems is virtually nonexistent. (. . . ) This topic certainly
deserves further consideration’’.

From themathematical point of view a considerable difficulty in analysing problems of contactmechanics, and dynamical
problems in particular, comes from the presence of involved boundary constraints which are often modelled by boundary
conditions of a dissipative subdifferential type and lead to a formulation of the considered problem in terms of a variational
or hemivariational inequality with, frequently, nondifferentiable boundary functionals.

Our aim in this paper is to contribute to this topic by an examination of the large time behaviour of solutions of a problem
coming from the theory of lubrication.

We study the problem of existence of the global attractor of a finite fractal dimension and of an exponential attractor for
a class of two-dimensional turbulent boundary driven flows subject to the Tresca law which naturally appears in lubrication
theory. The existence of such attractors strongly suggest that the time asymptotics of the considered flow can be described
by a finite number of parameters and then treated numerically [2,3]. We study the problem in its weak formulation given
in terms of an evolutionary variational inequality with a nondifferentiable boundary functional. This situation produces an
obstacle for applying directly the classical methods, presented e.g., in monographs [3–7], to prove that the fractal dimension
of the global attractor is finite. Instead, we apply the powerful method of l-trajectories, introduced in [8,9] which we use
further to prove the existence of an exponential attractor. The method of l-trajectories helps us to prove the existence of
an exponential attractor for a considerably large class of nonlinear problems, in particular that with lack of good regularity
properties (c.f., e.g., [10–12] and references therein).

The problem we consider is as follows. The flow of an incompressible fluid in a two-dimensional domainΩ is described
by the equation of motion

ut − ν∆u + (u · ∇)u + ∇p = 0 inΩ (1.1)
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and the incompressibility condition

div u = 0 inΩ. (1.2)

To define the domainΩ of the flow, letΩ∞ be the channel,

Ω∞ = {x = (x1, x2) : −∞ < x1 < ∞, 0 < x2 < h(x1)},

where h is a positive function, smooth, and L-periodic in x1. Then we set

Ω = {x = (x1, x2) : 0 < x1 < L, 0 < x2 < h(x1)}

and ∂Ω = Γ̄0 ∪ Γ̄L ∪ Γ̄1, where Γ0 and Γ1 are the bottom and the top, and ΓL is the lateral part of the boundary ofΩ .
We are interested in solutions of (1.1)–(1.2) inΩ which are L-periodic with respect to x1. We assume that

u = 0 at Γ1. (1.3)

Moreover, we assume that there is no flux condition across Γ0 so that the normal component of the velocity on Γ0 satisfies

u · n = 0 at Γ0, (1.4)

and that the tangential component of the velocity uη on Γ0 is unknown and satisfies the Tresca friction law with a constant
and positive maximal friction coefficient k. This means that, c.f., e.g., [1,13],

|ση(u, p)| ≤ k
|ση(u, p)| < k ⇒ uη = U0e1
|ση(u, p)| = k ⇒ ∃λ ≥ 0 such that uη = U0e1 − λση(u, p)


at Γ0 (1.5)

where ση is the tangential component of the stress tensor on Γ0 and U0e1 = (U0, 0),U0 ∈ R, is the velocity of the lower
surface producing the driving force of the flow.

If n = (n1, n2) is the unit outward normal to Γ0, and η = (η1, η2) is the unit tangent vector to Γ0 then we have

ση(u, p) = σ(u, p) · n − ((σ (u, p) · n) · n)n, (1.6)

where σ(u, p) = (σij(u, p)) = (−pδij + ν

ui,j + uj,i


) is the stress tensor. Finally, the initial condition for the velocity field

is

u(x, 0) = u0(x) for x ∈ Ω.

The problem is motivated by the examination of a certain two-dimensional flow in an infinite (rectified) journal bearing
Ω×(−∞,+∞), whereΓ1×(−∞,+∞) represents the outer cylinder, andΓ0×(−∞,+∞) represents the inner, rotating
cylinder. In the lubrication problems the gap h between cylinders is never constant. We can assume that the rectification
does not change the equations as the gap between cylinders is very small with respect to their radii.

The knowledge or the judicious choice of the boundary conditions on the fluid–solid interface is of particular interest in
lubrication area which is concernedwith thin film flow behaviour. The boundary conditions to be employed are determined
by numerous physical parameters characterizing, for example, surface roughness and rheological properties of the fluid.

The widely used no-slip condition when the fluid has the same velocity as surrounding solid boundary is not respected if
the shear rate becomes too high (no-slip condition is induced by chemical bounds between the lubricant and the surrounding
surfaces and by the action of the normal stresses, which are linked to the pressure inside the flow; on the contrary, when
tangential stresses are high they can destroy the chemical bounds and induce the slip phenomenon). We can model such
situation by a transposition of the well-known friction laws between two solids [1] to the fluid–solid interface.

The system of Eqs. (1.1)–(1.2) with boundary conditions: (1.3) at Γ1 for h = const and u = const on Γ0, instead of
(1.4)–(1.5),was intensively studied in several contexts, some of themmentioned in the introduction of [14]. The autonomous
case with h ≠ const andwith u = const onΓ0 was considered in [15,16]. See also [17] where the case h ≠ const, u = U(t)e1
onΓ0, was considered. The dynamical problem, important for applications, we consider in this paper has been studied earlier
in [18] in the nonautonomous case for which the existence of a pullback attractor was established with the use of a method
that, however, did not guarantee the finite dimensionality of the pullback attractor (or the global attractor in the reduced
autonomous case).

To establish the existence of the global attractor of a finite fractal dimension we use the method of l-trajectories as
presented in [9]. This method appears very useful when one deals with variational inequalities, cf., [12], as it overcomes
obstacles coming from the usual methods. One needs neither compactness of the dynamics which results from the second
energy inequality nor asymptotic compactness, cf., i.e., [7,17], which results from the energy equation. In the case of
variational inequalities it is sometimes not possible to get the second energy inequality and the differentiability of the
associated semigroup due to the presence of nondifferentiable boundary functionals. On the other hand, we do not have
an energy equation to prove the asymptotic compactness.

While there are othermethods to establish the existence of the global attractorwhere the problemof the lack of regularity
appears, that, e.g., based on the notion of the Kuratowski measure of noncompactness of bounded sets, where we do not
need even the continuity of the semigroup associated with a given dynamical problem, cf., e.g., [19], and also [18], where
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