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a b s t r a c t

In this article the process of nutrient uptake by a single root branch is studied. We consider
diffusion and active transport of nutrients dissolved in water. The uptake happens on the
surface of thin root hairs distributed periodically and orthogonal to the root surface. Water
velocity is defined by the Stokes equations. We derive a macroscopic model for nutrient
uptake by a hairy-root from microscopic descriptions using homogenization techniques.
The macroscopic model consists of a reaction-diffusion equation in the domain with hairs
and a diffusion-convection equation in the domain without hairs. The macroscopic water
velocity is described by the Stokes system in the domain without hairs, with no-slip
condition on the boundary between domain with hairs and free fluid.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

As a result of root damage, certain species of plant can be genetically transformed by the bacterium Agrobacterium
rhizogenes. This transformation causes the plant to produce ‘‘hairy-roots’’ — dense, highly branched root structures. Of
particular interest is that hairy-roots can produce certain metabolites, which have beneficial pharmaceutical properties. In
an attempt to intensify the production of thesemetabolites, experiments concerning the growth of hairy-roots in bioreactors
are now underway. In order to optimize this process, it is necessary to obtain a better understanding the metabolism and
growth of these root structures. Here, as a first step, we develop and analyse a mathematical model for the nutrient uptake
by a single branch of a hairy-root. The surface of a hairy-root is covered with fine ‘‘hairs’’ (micro-scale roots), which enlarge
the active surface area of roots and thus increase the uptake of nutrients. However, due to their high density, the hairs are a
significant obstacle to the flowofwater. Themodelwepropose is defined in apartially perforateddomain.We considerwater
flow around the root structure and diffusion of nutrientmolecules dissolved inwater. Substrates diffuse and are transported
by the flow in the fluid part and are absorbed on the surface of the hairs, i.e. on the boundary of the microstructure. Flow
velocity of the water can be defined by the Stokes system. The scale of hairs is too small for accurate numerical computation
of the full problem and the derivation of a macroscopic model is required.
The derivation of macroscopic equations for the fluid flow in partially perforated domains was considered in [1–3]. As

a zero order approximation, a solution of Stokes or Navier–Stokes system in a free fluid domain with no-slip boundary
conditions on the interface between two domains was obtained. Higher order approximations and effective boundary
conditions at the interface between homogeneous and perforated domainswere derived using boundary layers. In thiswork,
these ideas are applied to amore general geometry. To derivemacroscopic equations for the velocity fieldwe have to assume
C2 regularity of the interface between free fluid and perforated domain, which implies the regularity of a Stokes solution
needed for the analysis. As a macroscopic model, we obtain Stokes equations in the domain without hairs with no-slip
condition on the interface between two domains. A better approximation for the water velocity requires the construction of
boundary layers, see [3]. For themore complicated geometry considered here, boundary layer correction can be constructed
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only locally and hence will not be considered further here. A macroscopic model for the nutrient concentration consists of a
diffusion equation with a reaction describing the uptake process on hair surfaces in the perforated domain and a diffusion-
convection equation in the homogeneous domain. Both the partial heterogeneity of the domain and the convective term
make the analysis of the equations for the concentration proposed here, non-standard. In the estimates for the convective
term, the regularity of the velocity field and the error estimate for the difference of microscopic and macroscopic velocities
are used. To derive a macroscopic equation for the nutrient concentration we use the technique of two-scale convergence,
which was introduced in [4,5] and extended to sequences of functions defined on surfaces in [6,7]. This extension and
a compactness argument are used here to obtain the convergence of the nonlinear function defined on the surface of
the microstructure. There are many results on homogenization of parabolic equations defined in completely perforated
domains. The two-scale convergence was used in [7] to homogenize diffusion-reaction processes in a catalyst consisting
of periodic distributed bars. A similar model with convection defined in a porous medium was studied in [8] using an
energymethod. Amacroscopicmodel describing diffusion, convection and nonlinear reaction in a periodic array of cells was
derived in [9]. Two-scale convergence coupled withmonotonicity methods and compensated compactness were used there
to show the convergence in the nonlinear terms. Homogenization of reaction-diffusion and reaction-diffusion-convection
equations coupled with linear or nonlinear ordinary differential equations on the surface of the microstructure was studied
in [10,11]. Macroscopic equations for reaction-diffusion between periodic distributed soil grain with nonlinear monotone
kinetics on the grain surface and for reaction-diffusion processes both inside and outside grains were derived in [12,13].
The effective behavior of solutions of Laplace equation in a partially perforated domain and the contact problem between
a porous medium and a non-perforated domain were studied in [14,15]. Derivation of macroscopic equations in a domain
with a microstructure consisting of thick junctions is based on the construction of a proper extension operator, [16].
The paper is organized as follows: First, we present a description of the considered geometry, define a microscopic

model, and formulate existence and uniqueness results for solutions of the microscopic model. In Section 3 we show a
priori estimates for the water velocity and derive macroscopic equations for the velocity field. In Section 4 we prove a
priori estimates for the nutrient concentration and, after extension of the solutions from the perforated domain to the
whole domain, using there estimates, we show the convergence of solutions of the microscopic problem to a solution of
a macroscopic model.

2. Problem formulation

We consider a single root with hairs orthogonal to the root surface and distributed periodically. For the sake of simplicity
we replace the cylindrical geometry of a root surface by a rectangle and pose periodic boundary conditions on the sides.
We define a domain Ω = (0, 1) × (0,M)2 with inflow boundary Γin = (0, 1) × {M} × (0,M), outflow boundary
Γout = (0, 1) × {0} × (0,M), and Γ1 = (0, 1) × (0,M) × {M}, Γ3 = (0, 1) × (0,M) × {0}. For 0 < m1 < m2 < M
and a smooth (C2), positive, 1-periodic in x1 function G : (0, 1) × (m1,m2)→ R with supx1,x2 G < M , G = 0 for x2 = m1,
x2 = m2, we defineΩ1 = {(x1, x2, x3) ∈ (0, 1)× (m1,m2)× (0,G(x1, x2))},Ω2 = Ω \Ω1, Γ2 = ∂Ω1 \ Γ3. We can extend
G to R2 by zero in x2 and periodically in x1. We define also

• Unit cell Z = [0, 1]2, repeated periodically over R2, Y0 ⊂ Z , an open compactly included in Z subset with a smooth
boundary R = ∂Y0, Y = Z \ Ȳ0.
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Γ ∗ = ∪{Rk × (0, Lk), k ∈ Z2}, Lk are the lengths of the hairs, Lk = inf(x1,x2)∈εZk G(x1, x2) − ε, and ε > 0 is the ratio
between the radius of a root hair and the size ofΩ1.
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