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a b s t r a c t

We have proved that all the closed connected sets of solutions of the complex
Ginzburg–Landau equation

−∆u(x) + 2i⟨A(x), ∇u(x)⟩ + ‖A(x)‖2u(x) = λ(1 − |u(x)|2)u(x) in Ω,
u = 0 on ∂Ω,

bifurcating from the set of normal solutions {0} × (0, +∞) ⊂ H1
0 (Ω, C) × (0, +∞)

are unbounded, where Ω ⊂ R2 is an open, bounded domain with smooth boundary,
A(x1, x2) = (−x2, x1) and ‖ · ‖ is the usual norm in R2.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The goal of this paper is to study nonzero solutions of the following complex Ginzburg–Landau equation
−1u(x) + 2i⟨A(x), ∇u(x)⟩ + ‖A(x)‖2u(x) = λ(1 − |u(x)|2)u(x) in Ω,
u = 0 on ∂Ω,

(1.1)

where λ ∈ (0, +∞), Ω ⊂ R2 is an open, bounded domain with smooth boundary, A(x1, x2) = (−x2, x1) and ‖ · ‖ is the
usual norm in R2.

Starting fromonenormal solution, a naturalway of finding new solutions is to increase the parameterλ from0 and to look
for bifurcation values of λ. Bifurcations of solutions of the Ginzburg–Landau type problems have been considered by many
authors; see for instance [1–8] and references therein. The only possible bifurcation points of solutions of problem (1.1) are
the eigenvalues of the magnetic Laplacian. Usually the authors study local bifurcations of nonzero solutions of problem
(1.1) by using the Crandall–Rabinowitz bifurcation theorem, Krasnosiel’ski bifurcation theorem for potential operators,
Lyapunov–Schmidt reduction, center manifold theorem, theorem on attractor bifurcations and implicit function theorem.
On the other hand, the global bifurcations of solutions of the one-dimensional Ginzburg–Landau model have been studied
in [3]. Using the Brouwer degree the authors have proved the existence of a closed connected set of asymmetric solutions
which connect the global curve of symmetric solutions to an asymmetric normal state solution.

Weproceed in this paper another approach. Namely,we investigate global bifurcations in the sense of Rabinowitz, see [9],
of solutions of the complex Ginzburg–Landau equation

−1u(x) + 2i⟨A(x), ∇u(x)⟩ + ‖A(x)‖2u(x) = λ(1 − |u(x)|2)u(x) in Ω,
u = 0 on ∂Ω,

(1.2)

bifurcating from the set of normal solutions {0} × R ⊂ H1
0 (Ω, C) × R.
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It is easy to verify that if (u, λ) ∈ H1
0 (Ω, C)×R is a solution of problem (1.2) then so is (eiθu, λ) ∈ H1

0 (Ω, C)×R for every
θ ∈ R. Therefore we consider solutions of problem (1.2) as critical SO(2)-orbits of a family of SO(2)-invariant functionals
J ∈ C2(H1

0 (Ω, R) × H1
0 (Ω, R) × R, R) defined by (2.4).

Since the gradient ∇uJ ∈ C1(H1
0 (Ω, R) × H1

0 (Ω, R) × R,H1
0 (Ω, R) × H1

0 (Ω, R)) is SO(2)-equivariant, in order to study
solutions of the equation ∇uJ(u, λ) = 0 we apply a version of the famous Rabinowitz alternative for critical SO(2)-orbits
of SO(2)-equivariant gradient operators, see Theorems 4.1, 4.7 of [10]. It is worth pointing out that to prove this theorem
we have used the degree theory for equivariant gradient maps, see [11–13]. In fact we have excluded one of possibilities of
behavior of every continuum (closed connected set) of nonzero solutions of problem (1.2) bifurcating from the set of normal
solutions. Namely, we have proved that these continua are unbounded.

2. Preliminaries

Set S1 = {z ∈ C : |z| = 1}, denote by SO(2) the group of special orthogonal maps of R2 i.e. SO(2) =
g(θ) =


cos θ − sin θ
sin θ cos θ


: θ ∈ R


and consider R2 as SO(2)-representationwith the SO(2)-action given by (g(θ), x) = g(θ)x.

Let Ω ⊂ R2 be an open, bounded domain with smooth boundary. Consider a Sobolev spaces H = H1
0 (Ω, R) ⊕ H1

0 (Ω, R)

and H1
0 (Ω, C) with the following scalar products

⟨(v1, z1), (v2, z2)⟩H =

∫
Ω

(∇v1(x), ∇v2(x)) + v1(x)v2(x)dx +

∫
Ω

(∇z1(x), ∇z2(x)) + z1(x)z2(x)dx

and ⟨u1, u2⟩H1
0 (Ω,C) =


Ω
(∇u1(x), ∇u2(x)) + u1(x)u2(x)dx, where (·, ·) is the usual scalar product in R2. It is clear that

⟨(v1, z1), (v2, z2)⟩H = ℜ⟨v1 + iz1, v2 + iz2⟩H1
0 (Ω,C).

Let A : R2
→ R2 be a linear map given by A(x1, x2) = (−x2, x1). It is clear that A(g(θ)x) = g(θ)A(x) for every θ ∈ R.

Define a scalar product ⟨·, ·⟩H1
A

: H1
0 (Ω, C) ⊕ H1

0 (Ω, C) → C as follows

⟨u1, u2⟩H1
A

=

∫
Ω

⟨∇u1(x) − iu1(x)A(x), ∇u2(x) − iu2(x)A(x)⟩dx.

We underline that norms ‖ · ‖H1
A
, ‖ · ‖H1

0 (Ω,C) : H1
0 (Ω, C) → R+ are equivalent, see [8]. Define a scalar product (·, ·)A :

H ⊕ H → R by ((v1, z1), (v2, z2))A = ℜ⟨v1 + iz1.v2 + iz2⟩H1
A
. Put u = v + iz ∈ H1

0 (Ω, C). Since ‖v + iz‖H1
0 (Ω,C) = ‖(v, z)‖H

and ‖v + iz‖H1
A

= ‖(v, z)‖A, the norms ‖ · ‖A, ‖ · ‖H : H → R+ are equivalent.

Remark 2.1. The Hilbert spaces (H, ⟨·, ·⟩H), (H, ⟨·, ·⟩A) are orthogonal SO(2)-representations with the SO(2)-action given
by (g(θ)(v, z))(x) = (g(θ)(v(x), z(x))t)t . The Hilbert spaces (H1

0 (Ω, C), ⟨·, ·⟩H1
0 (Ω,C)), (H

1
0 (Ω, C), ⟨·, ·⟩H1

A
), are orthogonal

S1-representations with the S1-action defined by (eiθ1u)(x) = eiθ1u(x).

Define the Ginzburg–Landau potential I ∈ C2(H1
0 (Ω, C) × R, R) as follows

I(u, λ) =

∫
Ω

1
2
|(∇ − iA(x))u(x)|2 +

λ

4
(1 − |u(x)|2)2dx. (2.1)

In other words we obtain I(u, λ) =
1
2‖u‖

2
H1
A

+
λ
4


Ω
(1 − |u(x)|2)2dx.

We are going to study solutions of the following problem
∇uI(u, λ) = 0. (2.2)

The corresponding Euler–Lagrange equation has the following form
−1u(x) + 2i⟨A(x), ∇u(x)⟩ + ‖A(x)‖2u(x) = λ(1 − |u(x)|2)u(x) in Ω,
u = 0 on ∂Ω.

(2.3)

Since in this article we are going to apply abstract results of real equivariant nonlinear analysis, we replace the
Ginzburg–Landau functional with the functional J ∈ C2(H × R, R) defined as follows

J((v, z), λ) := I(v + iz, λ). (2.4)
In other words J((v, z), λ) =

1
2‖v + iz‖2

H1
A

+
λ
4


Ω
(1 − v(x)2 − z(x)2)2dx.

The corresponding Euler–Lagrange system is the following−1v(x) − 2⟨A(x), ∇z(x)⟩ + ‖A(x)‖2v(x) = λ(1 − v(x)2 − z(x)2)v(x) on Ω,

−1z(x) + 2⟨A(x), ∇v(x)⟩ + ‖A(x)‖2z(x) = λ(1 − v(x)2 − z(x)2)z(x) on Ω,
v = z = 0 in ∂Ω.

(2.5)

Lemma 2.1. Functional J given by (2.4) is SO(2)-invariant i.e. J(g(θ)(v, z), λ) = J((v, z), λ) for every ((v, z), λ) ∈ H × R and
θ ∈ R.



Download	English	Version:

https://daneshyari.com/en/article/837625

Download	Persian	Version:

https://daneshyari.com/article/837625

Daneshyari.com

https://daneshyari.com/en/article/837625
https://daneshyari.com/article/837625
https://daneshyari.com/

