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a b s t r a c t

This work presents a new model of the evolutionary process formulated by the Serial
Endosymbiosis Theory represented by a succession of stages involving different metabolic
and ecological interactions among populations of bacteria considering both the population
dynamics and production processes of these populations. In such an approachwemake use
of systems of differential equations known as Volterra–Hamilton systems as well as some
geometric concepts involving KCC Theory and the Projective Geometry of Berwald Spaces
and also correct a statement ofM.Matsumoto in the literature on this topic.We also recount
in somedetail previouswork comparing production stability of Endosymbiosis Theorywith
that of Ancestral Commune Theory.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

According to the Ancestral Commune Theory of Carl Woese, life started as a loose conglomerate of many types of proto-
cells, some 4000 MYBP. A billion years later trading loose bits of RNA and DNA between these precursors gave way to
Darwinian natural selection. An anaerobic thermophile bacterium was present in the primordial soup and possessed a
nuclear genome. This evolved prokaryote was subsequently parasitized by a bacterium that had a flagellum for swimming
and could process oxygen for its energy. It is called a mitochondrian, while the symbiocosm is called a eukaryote. It is the
common ancestor of all creatures except the prokaryotes themselves. This theory has been fully validated via molecular
genetics and is credited to Lynn Margulis. It is therefore obvious that the most ancient symbiocosm is the eukaryote cell.
For plant species, one has the chloroplasts as well as mitochondia, both of which occur in variable small numbers across the
plant and animal species spectrum. Using the Volterra–Hamilton method we have compared the evolutionary theories of
Woese and Margulis and because we treated both within a single logical framework, in spite of the fact that the communes
of proto-cells in Woese’s theory predate the evolved eukaryote symbiocosm, sensible comparison was achieved. We are
now going to recount the detailed mathematical material.

Using the Volterra–Hamilton systems as a logical method we have compared (see [1] for recent advances in
endosymbiosis) the evolutionary theories of Carl Woese and Lynn Margulis and found the former suffers from robust
instability while the later is robustly stable in its production processes [2,3].

N i
= density of i-th bacterial population, assumed to satisfy classical logistic dynamics

dN i

dt
= λN i(1 − α(i)N i),
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with pre-symbiont condition (all lambdas equal), i = 1, 2, . . . , n and repeated indices are summed except if there is a
parenthesis. Since our model will describe ecology and chemical production (in the form of modular bits of RNA), we
introduce the Volterra production equation

dxi

dt
= k(i)N i.

We require that, for either model, our evolved system has the form

d2xi

ds2
+ Gi

jk
dxj

ds
dxk

ds
= 0,

where the n3 coefficients are constants or involve xi. This class of dynamical systems will encompass both the primeval and
the evolved systems, and serve for modeling either Margulis’ or Woese’ theories.

In order to accommodate our ergonomics, i.e., division of labour, we require the production parameter to be given by
the cost of production functional, ds = F(x, dx) > 0. Moreover, F is to be positively homogeneous of degree 1 in dx =

(dx1, . . . , dxn), that is, for any positive constant c ,

F

x, c

dx
dt


= c F


x,

dx
dt


,

so that ds/dt , the rate of production in the symbiocosm, depends on individual bacterial rates dxi/dt through the cost
F(x, dx/dt). The arc-length s =

 t
t0
F(x, dx/dt)dt represents the total production of the symbiocosm in the interval (t2− t1)

along a given curve x(t) = (x1(t), . . . , xn(t)). The homogeneity of F means that, if all the individual rates dxi/dt are mag-
nified by a factor of c , then ds/dt is so magnified. This forces s to be independent of the time measure.

We have to introduce the expression Hs = (1/2)F 2(x, dx/dt), which yields Euler–Lagrange equations. Note that Hs is
therefore positively homogeneous of degree 2 in dx/dt , thus, multiplying each dxi/dt by a positive constant c implies that
Hs is multiplied by c2. Furthermore, Hs defines two classes of systems, namely, the Riemannian class, where Hs is quadratic
in dx/dt , and the Finsler (non-Riemannian) class, where Hs is not quadratic, but is homogeneous of degree 2 in dx/dt . Here
are two examples, one for each class. For the former, quadratic case, we may have

Hs =
1
2
e2αix

i


dx1

dt

2

+ · · · +


dxn

dt

2

,

while for the latter, non-quadratic but homogeneous case, we have

Hs =
1
2
e2φ(x)

(dx2/dt)2+2/λ

(dx1/dt)2/λ
,

where we have taken n = 2, λ is a positive constant and φ(x) is an arbitrary polynomial on x1 and x2. We will see in the
following sections that the former applies to Woese’s theory, while the latter applies to Margulis’ theory.

To solve the problem we need to use the techniques of Finsler geometry. Our main result is that, for Hs given as above,
with φ(x) = −α1x1 + (λ+ 1)α2x2 + ν3x1x2, and λ > 0, αi > 0 and ν3 non-zero, the Euler–Lagrange equations are

dy1

ds
+ λ(α1 − ν3x2).(y1)2 = 0,

dy2

ds
+ λ


α2 +

ν3

λ+ 1
x1

.(y2)2 = 0.

(1)

Note that, if ν3 = 0, then the original double logistic system is obtained.1Moreover, Liapunov stability of this system is
completely determined by the sign of the curvature (see Appendices):

K =
λ2

λ+ 1
ν3


y1

y2

1+2/λ

. exp(−2[−α1x1 + (λ+ 1)α2x2 + ν3x1x2]).

If ν3 > 0, then stability results, while the reverse is true for ν3 < 0. Geodesics of 2-dimension positively curved spaces, such
as a sphere, will remain close generally in x-space, the system being, therefore, stable, while for those with a negative or
zero curvature, as a trumpet surface or a plane, respectively, will not, yielding unstable systems. The parameter ν3 is called
the exchange parameter. Thus, Margulis # 1 has stable production. Index # 1 indicates the parasite and # 2, the host [4–7].

In the Ancestral Commune model we disallow explicit xi in the coefficients, but allow the number of species to be large.
This is our model of a loose conglomerate of diverse bacterial species. Neither do we allow the coefficients to depend on

1 Where ds = eλtdt must be employed to transform to real time t from parameter s.
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