

Contents lists available at SciVerse ScienceDirect

## Nonlinear Analysis: Real World Applications





# Second order periodic problems in the presence of dry friction

### Ruyun Ma

Department of Mathematics, Northwest Normal University, Lanzhou 730070, PR China

#### ARTICLE INFO

Article history: Received 10 November 2009 Accepted 26 May 2011

Keywords:
Dry friction
Differential inclusion
Eigenvalues
Periodic solutions
Topological degree

#### ABSTRACT

We prove, via an approach by ordinary differential equations, the existence of oscillations for second order differential inclusions of the form

$$u'' + u \in \varphi(t) - \mu(u)S(u'),$$

where  $\varphi$  is  $2\pi$ -periodic,  $\mu$  is allowed to satisfy the at most linear growth condition of the form  $\mu_0 \leq \mu(u) \leq \mu_0 + \mu_1 |u|$  with some restrictions on  $\mu_1$ , S is bounded and continuous in  $\mathbb{R} \setminus \{0\}$  with a jump discontinuity at 0 and  $S(0^-) < S(0^+)$ . An existence result for resonance at first nonzero eigenvalue is obtained.

© 2011 Elsevier Ltd. All rights reserved.

#### 1. Introduction

Imagine a mass attached to a spring, moving in a tube containing a fluid, with contact to the wall and periodically excited by a force  $\Phi(t)$ . Under the simplest assumptions about the forces involved, we have -ku for the spring, -ru' for the viscous damping caused by the fluid and -c sgn u' for the dry friction (or Coulomb friction) at the wall, with positive constants k, r and c. Hence, balance of forces and appropriate scaling of time t yield the engineering standard form

$$u'' + 2Du' + \mu \operatorname{sgn} u' + u = \varphi(t),$$
 (1.1)

where  $2D = r/\sqrt{Mk}$ ,  $\mu = k/c$  and  $\varphi(t) = \Phi(vt)/k$  with  $v = \sqrt{M/k}$ . We note that in more realistic cases  $\mu$  may depend on the position of the mass (see e.g. [1]), where dry friction often leads to

$$\mu(r) = \mu_0 + \mu_1 |r|,\tag{1.2}$$

and some of these forces may actually be nonlinear (see e.g. Section 76 of [2] or Section 50 of [3]). Thus, we need to consider

$$u'' + g(u') + \mu(u)S(u') + f(u) = \varphi(t), \tag{1.3}$$

where f, g are continuous,  $\varphi$  is periodic, and S is bounded and continuous in  $\mathbb{R} \setminus \{0\}$  with a jump discontinuity at 0 and  $S(0^-) < S(0^+)$ . We refer the reader to the survey by Kunze [4] for a wealth of information on this kind of problem.

The case when f(u) = u, g(u') = 0,  $\mu(u) \equiv \mu$  and  $S(u') = \operatorname{sgn} u'$  has been considered by Deimling and Szilágyi [5], Deimling [6] and Cabada and Sanchez [7]. Existence results of (1.3) for resonance at  $\lambda_2$  were obtained in these papers, where  $\lambda_2$  is the first nonzero eigenvalue of

$$u''(t) + \lambda u(t) = 0,$$
  
 $u(0) = u(2\pi), \qquad u'(0) = u'(2\pi)$ 

and  $\lambda_2 = 1$ . However  $\mu(u)$  in [5,6] is a constant and  $\mu(u)$  in [7] is bounded in  $\mathbb{R}$ .

The periodic problem (1.3) has also been considered by Deimling [8], and Bothe [9], and existence results for resonance at the zero eigenvalue ( $\lambda_1=0$ ) were obtained in these two papers. In [8],  $\mu(u)$  is assumed to be a constant; while in [9],  $\mu(u)$  is allowed to satisfy a condition like (1.2). Notice that the eigenspace corresponding to  $\lambda_1$  (= 0) is span{c}, and the eigenspace corresponding to  $\lambda_2$  (= 1) is span{ $\frac{1}{\sqrt{\pi}}\cos t$ ,  $\frac{1}{\sqrt{\pi}}\sin t$ }. Since they are of different dimension, there exists a large difference in the processes of proving existence results for resonances at  $\lambda_1$  and  $\lambda_2$ .

So, the natural question is whether or not the existence results for resonance at the first nonzero eigenvalue could be established under unbounded  $\mu(u)$ .

It is the purpose of this paper to prove the existence of solutions of

$$u'' + u + \mu(u)S(u') = \varphi(t),$$

$$u(0) = u(2\pi), \qquad u'(0) = u'(2\pi)$$
(1.4)

for resonance to  $\lambda_2=1$  when  $\mu(x)$  is at most linear growth, i.e.,  $\mu_0 \leq \mu(u) \leq \mu_0 + \mu_1 |u|$  with some restrictions on  $\mu_1$ , see (H3). We make the following assumptions.

(H1) S is a function defined, bounded and continuous in  $\mathbb{R} \setminus \{0\}$  with a jump discontinuity at  $0, S(0^-) < S(0^+)$ , and

$$\alpha := \limsup_{z \to -\infty} \delta(z) < 0 < \beta := \liminf_{z \to +\infty} \delta(z).$$

- (H2)  $\varphi$  is continuous,  $2\pi$ -periodic.
- (H3)  $\mu: \mathbb{R} \to \mathbb{R}$  is continuous and there exist  $\mu_0 \in (0, \infty)$ ,  $\mu_1 \in [0, \infty)$ , such that

$$\mu_0 \le \mu(u) \le \mu_0 + \mu_1 |u|, \quad u \in \mathbb{R}.$$

**Remark 1.0.** Notice that in the mechanical system studied in [1], friction leads to  $\mu(u) = \mu_0 + \mu_1 |u|$  with  $\mu_0, \mu_1 > 0$ . Since S is not properly defined for z = 0, (1.4) is understood as

$$u'' + u \in \varphi(t) - \mu(u) \mathcal{S}(u'),$$

$$u(0) = u(2\pi), \qquad u'(0) = u'(2\pi)$$
(1.5)

with

$$\mathcal{S}(z) = \begin{cases} S(z), & \text{for } z \neq 0, \\ [S(0^{-}), S(0^{+})], & \text{for } z = 0. \end{cases}$$
 (1.6)

**Definition.** By a solution of (1.4) we mean a  $2\pi$ -periodic function  $u \in W^{2,2}(0,2\pi)$  such that there exists  $w \in L^{\infty}(0,2\pi)$  satisfying  $S(0^-) \le w(t) \le S(0^+)$  a.e. in  $B := \{t : u'(t) = 0\}$ , w(t) = S(u'(t)) a.e. in  $A := \{t : u'(t) \ne 0\}$  and

$$u''(t) + \mu(u(t))w(t) + u(t) = \varphi(t), \quad t \in (0, 2\pi),$$

$$u(0) = u(2\pi), \quad u'(0) = u'(2\pi).$$

Let E be the Banach space  $L^2(0, 2\pi)$  with the inner product

$$\langle u, v \rangle = \int_0^{2\pi} u(t)v(t)dt.$$

Since (1.5) contains in the left-hand side a non-invertible operator, we shall use the decomposition of functional space into its kernel and a complementary subspace. Let us set

$$E = E_1 \oplus E_2$$
,

where  $\oplus$  denotes orthogonal direct sum,

$$E_1 := \operatorname{span}\{\varphi_1(t), \varphi_2(t)\}\$$

and

$$\varphi_1(t) = \frac{1}{\sqrt{\pi}} \cos t, \qquad \varphi_2(t) = \frac{1}{\sqrt{\pi}} \sin t.$$

Accordingly, we split each  $u \in L^2(0, 2\pi)$  as  $u = u_1 + u_2, u_i \in E_i, i = 1, 2$ . Set

$$S^* := \sup_{\mathbb{R}\setminus\{0\}} |S(z)|. \tag{1.7}$$

## Download English Version:

# https://daneshyari.com/en/article/837653

Download Persian Version:

https://daneshyari.com/article/837653

<u>Daneshyari.com</u>