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a b s t r a c t

We prove, via an approach by ordinary differential equations, the existence of oscillations
for second order differential inclusions of the form

u′′
+ u ∈ ϕ(t) − µ(u)S(u′),

where ϕ is 2π-periodic, µ is allowed to satisfy the at most linear growth condition of the
formµ0 ≤ µ(u) ≤ µ0+µ1|u|with some restrictions onµ1, S is bounded and continuous in
R\{0}with a jump discontinuity at 0 and S(0−) < S(0+). An existence result for resonance
at first nonzero eigenvalue is obtained.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Imagine amass attached to a spring, moving in a tube containing a fluid, with contact to the wall and periodically excited
by a force Φ(t). Under the simplest assumptions about the forces involved, we have −ku for the spring, −ru′ for the viscous
damping caused by the fluid and −c sgn u′ for the dry friction (or Coulomb friction) at the wall, with positive constants k, r
and c . Hence, balance of forces and appropriate scaling of time t yield the engineering standard form

u′′
+ 2Du′

+ µsgn u′
+ u = ϕ(t), (1.1)

where 2D = r/
√
Mk, µ = k/c and ϕ(t) = Φ(νt)/kwith ν =

√
M/k. We note that in more realistic cases µ may depend on

the position of the mass (see e.g. [1]), where dry friction often leads to

µ(r) = µ0 + µ1|r|, (1.2)

and some of these forces may actually be nonlinear (see e.g. Section 76 of [2] or Section 50 of [3]). Thus, we need to consider

u′′
+ g(u′) + µ(u)S(u′) + f (u) = ϕ(t), (1.3)

where f , g are continuous, ϕ is periodic, and S is bounded and continuous in R \ {0} with a jump discontinuity at 0 and
S(0−) < S(0+). We refer the reader to the survey by Kunze [4] for a wealth of information on this kind of problem.

The case when f (u) = u, g(u′) = 0, µ(u) ≡ µ and S(u′) = sgn u′ has been considered by Deimling and Szilágyi [5],
Deimling [6] and Cabada and Sanchez [7]. Existence results of (1.3) for resonance at λ2 were obtained in these papers, where
λ2 is the first nonzero eigenvalue of

u′′(t) + λu(t) = 0,
u(0) = u(2π), u′(0) = u′(2π)

and λ2 = 1. However µ(u) in [5,6] is a constant and µ(u) in [7] is bounded in R.
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The periodic problem (1.3) has also been considered by Deimling [8], and Bothe [9], and existence results for resonance
at the zero eigenvalue (λ1 = 0) were obtained in these two papers. In [8], µ(u) is assumed to be a constant; while in [9],
µ(u) is allowed to satisfy a condition like (1.2). Notice that the eigenspace corresponding to λ1 (= 0) is span{c}, and the
eigenspace corresponding to λ2 (= 1) is span{

1
√

π
cos t, 1

√
π
sin t}. Since they are of different dimension, there exists a large

difference in the processes of proving existence results for resonances at λ1 and λ2.
So, the natural question is whether or not the existence results for resonance at the first nonzero eigenvalue could be

established under unbounded µ(u).
It is the purpose of this paper to prove the existence of solutions of

u′′
+ u + µ(u)S(u′) = ϕ(t),

u(0) = u(2π), u′(0) = u′(2π)
(1.4)

for resonance to λ2 = 1 when µ(x) is at most linear growth, i.e., µ0 ≤ µ(u) ≤ µ0 +µ1|u| with some restrictions on µ1, see
(H3). We make the following assumptions.

(H1) S is a function defined, bounded and continuous in R \ {0} with a jump discontinuity at 0, S(0−) < S(0+), and

α := lim sup
z→−∞

S(z) < 0 < β := lim inf
z→+∞

S(z).

(H2) ϕ is continuous, 2π-periodic.
(H3) µ : R → R is continuous and there exist µ0 ∈ (0, ∞), µ1 ∈ [0, ∞), such that

µ0 ≤ µ(u) ≤ µ0 + µ1|u|, u ∈ R.

Remark 1.0. Notice that in the mechanical system studied in [1], friction leads to µ(u) = µ0 + µ1|u| with µ0, µ1 > 0.
Since S is not properly defined for z = 0, (1.4) is understood as

u′′
+ u ∈ ϕ(t) − µ(u)S(u′),

u(0) = u(2π), u′(0) = u′(2π)
(1.5)

with

S(z) =


S(z), for z ≠ 0,
[S(0−), S(0+)], for z = 0.

(1.6)

Definition. By a solution of (1.4) we mean a 2π-periodic function u ∈ W 2,2(0, 2π) such that there exists w ∈ L∞(0, 2π)
satisfying S(0−) ≤ w(t) ≤ S(0+) a.e. in B := {t : u′(t) = 0}, w(t) = S(u′(t)) a.e. in A := {t : u′(t) ≠ 0} and

u′′(t) + µ(u(t))w(t) + u(t) = ϕ(t), t ∈ (0, 2π),

u(0) = u(2π), u′(0) = u′(2π).

Let E be the Banach space L2(0, 2π) with the inner product

⟨u, v⟩ =

∫ 2π

0
u(t)v(t)dt.

Since (1.5) contains in the left-hand side a non-invertible operator, we shall use the decomposition of functional space into
its kernel and a complementary subspace. Let us set

E = E1 ⊕ E2,

where ⊕ denotes orthogonal direct sum,

E1 := span{ϕ1(t), ϕ2(t)}

and

ϕ1(t) =
1

√
π

cos t, ϕ2(t) =
1

√
π

sin t.

Accordingly, we split each u ∈ L2(0, 2π) as u = u1 + u2, ui ∈ Ei, i = 1, 2. Set

S∗
:= sup

R\{0}
|S(z)|. (1.7)
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