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a b s t r a c t

Some systems of parabolic equations with nonlocal initial conditions are studied.
The systems arise when considering steady-state solutions to diffusive age-structured
cooperative or competing species. Local and global bifurcation techniques are employed
to derive a detailed description of the structure of positive coexistence solutions.
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1. Introduction and main results

In this paper, we characterize the structure of positive solutions to certain systems of coupled parabolic equations with
nonlocal initial conditions. Such systems arise as steady-state equations of two age-structured diffusive populations which
inhabit the same spatial region. The interaction between the two species is of cooperative, competing, or predator–prey type
leading to different structures of positive solutions. Let the densities of the two species be denoted by u = u(a, x) ≥ 0 and
v = v(a, x) ≥ 0 with a ∈ (0, am) and x ∈ Ω ⊂ Rn referring to age and spatial positions, respectively. The models we shall
focus on are of the form

∂au −∆Du = −α1u2
± α2vu, a ∈ (0, am), x ∈ Ω, (1.1)

∂av −∆Dv = −β1v
2
± β2uv, a ∈ (0, am), x ∈ Ω, (1.2)

subject to the nonlocal initial conditions

u(0, x) = η

∫ am

0
b1(a) u(a, x)da, x ∈ Ω, (1.3)

v(0, x) = ξ

∫ am

0
b2(a) v(a, x)da, x ∈ Ω. (1.4)

The equations are the steady-state equations of the corresponding time-dependent age-structured equationswith diffusion.
We refer to [1] for a recent survey on the formidable literature about age-structured population models.

The operator −∆D in (1.1), (1.2) stands for the negative Laplacian on Ω with subscript D indicating that Dirichlet
conditions

u(a, x) = v(a, x) = 0, a ∈ (0, am), x ∈ ∂Ω,
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are imposed on the smooth boundary ∂Ω of the bounded domainΩ . The diffusion coefficients in (1.1), (1.2) are taken to be
1, which is a purely notational simplification and does not affect the subsequentmathematical analysis. The number am > 0
denotes the maximal age of the species. Eqs. (1.3), (1.4) represent the age-boundary conditions reflecting that individuals
with age zero are those created when a mother individual of any age a ∈ (0, am) gives birth with rates ηb1(a) or ξb2(a). The
functions bj = bj(a) ≥ 0 describe the profiles of the fertility rates while the parameters η, ξ > 0 measure their intensity
without affecting the structure of the birth profiles. For easier statements of the results we assume the birth profiles

bj ∈ L+

∞
((0, am)) with bj(a) > 0 for a near am, j = 1, 2, (1.5)

are normalized such that∫ am

0
bj(a)e−λ1a da = 1, j = 1, 2, (1.6)

where λ1 > 0 denotes the principal eigenvalue of −∆D onΩ .
Assuming α1, α2, β1, β2 > 0, the form of the interaction between the two species is determined by the signs on the right

hand side of Eqs. (1.1), (1.2). Replacing ± by a positive sign + in both of the Eqs. (1.1) and (1.2) corresponds to a system (see
(1.11), (1.12)) where the two species are cooperative, while the case with ± replaced by negative signs − in each Eq. (1.1)
and (1.2) (see (1.14), (1.15)) reflects a competition of the species. The case with mixed signs, e.g. a negative sign − in (1.1)
instead of ± and a positive sign + in (1.2) describes a predator–prey-system (see (1.17), (1.18)) with a prey density u and a
predator density v.

The understanding of the qualitative dynamics of populations requires precise information about equilibrium solutions,
i.e. solutions to (1.1)–(1.4). Since obviously (u, v) ≡ (0, 0) solves these equations, the main goal is to establish nontrivial
nonnegative steady states and in particular positive coexistence solutions, that is, of solutions (u, v)with both components u
and v positive and nontrivial. Clearly, themain obstacle are the nonlocal boundary conditions (1.3), (1.4), which, for instance,
rule out a straightforward application of the parabolicmaximumprinciple. Suitablemaximumprinciples, however, are given
in Lemmas A.1 and A.2 of the Appendix.

This case of a predator–prey systemwas studied in [2] and local and global bifurcation phenomena of positive nontrivial
solutions with respect to the parameters η and ξ were obtained. In the present paper, we shall derive global bifurcation
results for the cooperative and the competition case. Depending on η and ξ we shall give a rather complete description of
the coexistence solutions. Moreover, we shall also improve the local bifurcation result [2, Theorem 2.4] to a global one.

We like to point out that variants of the elliptic counterparts to (1.1)–(1.2) when age structure is neglected from the
outset have been intensively studied in the past, e.g. see [3–17]. Concerning equations for a single specie, e.g. variants of
(1.1) subject to (1.3), we refer to [18–23].

To state our results for the present situation, we shall keep ξ fixed and regard η as bifurcation parameter in the following.
We thus write (η, u, v) for solutions to (1.1)–(1.4) with u, v belonging to the positive cone W+

q of

Wq := Lq((0, am),W 2
q,D(Ω)) ∩ W 1

q ((0, am), Lq(Ω))

for q > n + 2 fixed, but remark that all our solutions will have smooth components u, v with respect to both a ∈ J and
x ∈ Ω . We say that a continuum C (i.e. a closed and connected set) in R+

× W+
q × W+

q of solutions (η, u, v) to (1.1)–(1.4)
is unbounded with respect to η, provided the η-projection of C contains an interval of the form (η0,∞) with η0 ∈ R+, and
we say that C is unbounded with respect to the u-component in Wq provided there is a sequence ((ηj, uj, vj))j∈N in C with
‖uj‖Wq → ∞ as j → ∞. An analogous terminology shall be used if C is unbounded with respect to the v-component.

Clearly, problem (1.1)–(1.4) decoupleswhen taking either u or v to be zero. Noticing that TheoremA.4 from the Appendix
provides for each η > 1 a unique solution uη ∈ W+

q \ {0} to

∂au −∆Du = −α1u2, u(0, ·) = η

∫ am

0
b1(a)u(a, ·)da, (1.7)

and similarly for each ξ > 1 a unique solution vξ ∈ W+
q \ {0} to

∂av −∆Dv = −β1v
2, v(0, ·) = ξ

∫ am

0
b2(a) v(a, ·)da, (1.8)

there is, independent of what the signs ± in (1.1), (1.2) are, for any ξ ≥ 0 the trivial branch

B0 := {(η, 0, 0); η ≥ 0}

and the semi-trivial branch

B1 := {(η, uη, 0); η > 1} ⊂ R+
× (W+

q \ {0})× W+

q (1.9)

of solutions. For ξ > 1, an additional semi-trivial branch

B2 := {(η, 0, vξ ); η ≥ 0} ⊂ R+
× W+

q × (W+

q \ {0}) (1.10)

exists. Depending on the signs± in (1.1), (1.2) we shall establish further local and global bifurcation of coexistence solutions
from these semi-trivial branches.
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