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ARTICLE INFO ABSTRACT

Keywords: A good understanding of Mechanisms of Action (MechoAs) and appropriate methods to determine them is
Mechanism of action crucial for the accurate prediction of toxicity using in silico techniques. Different MechoAs can be related to
Classification different QSAR models to predict toxicity values. Therefore, we defined a set of MechoAs, based on Molecular
QSAR L Initiating Events, the first step of Adverse Outcome Pathways (AOPs). In the most common classification al-
izi;::;lty gorithms used to predict Modes of toxic Action, the prediction domain is often limited by the need to identify

known structural alerts. To circumvent this limitation, we developed a new algorithm to predict MechoAs
principally based on mammals and fish, using molecular modelling to obtain calculated molecular parameters.
Comparing the Verhaar scheme (as modified by Enoch et al. (2008)) with the MechoA method for the same
validation set, MechoA achieved 69% correct classifications as opposed to 45% for the Verhaar scheme, 17%
misclassifications for both, 13% classifications slightly different from the literature for our algorithm. No sub-
stances fell into zones where two possible MechoAs couldn’t be differentiated from each other, while 1% of the
molecules were out of the prediction domain of the algorithm as opposed to 38% using the Verhaar scheme.

Quantum calculations

Thus, this model enhances precision of correct AOP identification for in silico toxicity predictions.

Introduction

Under current chemical regulations, the use of in silico techniques is
encouraged and used to save time, cut costs and reduce animal testing
[1]. A good understanding of Mechanisms of Action (MechoAs) and
appropriate methods to determine them is crucial for the efficient
prediction of toxicity using in silico techniques, notably QSARs (Quan-
titative Structure-Activity Relationships) which are increasingly used to
predict ecotoxicity, as a regulatory endpoint to replace studies, as can
be seen on the ECHA disseminated database [2]. In this paper, the terms
Mode of Action (MoA) and MechoA have different meanings. MechoA
refers to the molecular interaction that a molecule will undergo, leading
to a biological outcome, which can be the key starting point of the
Adverse Outcome Pathway (AOP) for this substance, i.e. the Molecular
Initiating Event (MIE). Allen and co-workers [3] defined an MIE as “the
initial interaction between a molecule and a biomolecule or biosystem
that can be causally linked to an outcome via a pathway”. Thus, MIE
and MechoA are equivalent. However, in this publication, we prefer to
use the abbreviation MechoA instead of MIE as we want to underline
that these events can serve to classify the toxicity class of molecules, in
the same way as MoAs, because they are the basis of how a substance
impacts an organism’s integrity, at a molecular level. On the other
hand, the MoA is not so clearly defined, often referring to the

pathological effects that can be seen at the whole organism level in
terms of behaviour or death i.e. at the other end of the AOP [4]. In this
context, MechoAs and MoAs are both related to AOPs. But an MoA can
be the result of very different MechoAs. Conversely, the same MechoA
but different MoAs can occur mainly when comparing the AOPs across
different species.

Most of the time, separate models are needed for each MechoA or
chemical class to obtain acceptable levels of accuracy. However, in the
Verhaar classification [5], except for MoAs 1 & 2, MoA categories are
more broadly defined so a specific QSAR cannot be allocated to a single
MoA. Moreover, the most widely used method to determine MoAs, the
Verhaar scheme, does not always correctly allocate chemicals to the
appropriate categories despite several updates [6-7] and many
common chemical classes still remain “unclassifiable” (MoA5). Another
classification scheme was published by Russom et al. [4]. This system is
more detailed and could more easily be used to split chemicals into
categories that can be predicted with the same QSAR model if it was
made publicly available, but the number of categories in this scheme is
also far from comprehensive. More recently, another general classifi-
cation was published by Barron and coworkers [8], with 6 broad MoAs
including 31 specific MoAs. A statistical method to predict these MoAs
and to generate QSAR models for each MoA was also published by this
group [9] but with less specific MoAs than in the publication of 2015.
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The method is based on machine learning algorithms: linear dis-
criminant analysis (LDA) and random forest (RF). The algorithms select
randomly up to 8 from a pool of 970 descriptors to generate several
prediction models, each model relates to one MoA. For the LDA algo-
rithm, an MoA is selected if the dedicated model predicts a prob-
ability > 50% that the substance acts according to that MoA. For the RF
algorithm, an MoA is selected if > 50% of the decision trees predict this
MoA. Although, these criteria seem quite unrestrictive, the authors
report 84.5-87.7% correct MoA classifications for the validation set.
Nevertheless, despite these impressive results, a comparison of Verhaar,
Russom and Barron methods by Kienzler and co-workers [10] was less
optimistic. This publication revealed that a high proportion of chemi-
cals are unclassified by both Russom and Barron methods. For those
compounds which are classified by the 3 schemes, the predicted MoAs
were in concordance for only 42% of the molecules. Finally, several
methods to predict MoAs or MechoAs are available but have narrow
applicability domains [11-15]. For instance, a classification method
using MechoAs, proposed by Schultz [15], effectively differentiates
MechoAs, using a simple and justifiable descriptor (pKa), but with an
applicability domain limited to phenols, with only 2 MechoAs being
discriminated (polar narcosis and uncoupling of oxidative phosphor-
ylation). Consequently, there is a need for a classification scheme or
algorithm with a wider applicability domain based on precise and re-
levant category definitions corresponding to well-understood mechan-
isms of action. A model matching these requirements appears useful, if
not essential, to the appropriate use of QSARs [4] leading to a more
reliable toxicity prediction. Nevertheless, certain classes of compounds
are especially challenging to classify. For instance, non-polar and polar
narcosis, two MoAs as defined by Verhaar and co-workers, are still not
yet completely understood, even if several hypotheses and likely ex-
planations have been proposed [16]. As another example, the different
toxicity mechanisms of phenols are not completely described [17] and
the criteria to separate out the categories remain somewhat unclear
[18]. Moreover, the classification methods already available apply to
one species (or group of species), e.g. to fish [4,9,13], or to aquatic
organisms [5,19], or to rodents [20]. In our work, we compiled data
from various species, mostly rodents and fish, and thus, we derive
prediction MechoAs for these species, which differ significantly in
lifestyle and environment (and additional information can be given for
other species, but with lesser weight of evidence).

The aim of this work is to predict the MechoA only from the che-
mical structure, just as previous methods have attempted to do with
MoAs [4-5,13]. Firstly, it is reasonable to define chemical categories
based on the first molecular event, which is the simplest thing we can
predict in the whole AOP if we base our prediction only on the chemical
structure. Secondly, it may be easier to construct single QSAR models
covering complete categories using MechoAs rather than MoAs. Our
new MechoAs definitions were chiefly inspired by the work of Russom
and co-workers [4]. In parallel, we developed a new in silico method to
predict the MechoA of a molecule from its structure using a tiered se-
lection approach. This new method is applicable to a wide range of
organic chemicals (hydrocarbons, halides, ethers, esters, ketones, al-
dehydes, alcohols, phenols, anilines, nitrobenzenes, carbamates, sul-
phur-containing compounds, organophosphorus compounds, etc.). The
performance of the algorithm developed in this work was compared
with that of Verhaar’s scheme using a dataset taken from the literature.

MechoA definitions

For the purpose of this work we defined six general MechoA classes,
which are listed below together with a generic description:

1. Membrane destabilization: accumulation of molecules in cell mem-
branes without specific reaction. Membrane destabilization corre-
sponds to a direct narcotic effect, where the main hypothesis is that
cell membrane integrity is impaired by the accumulation of a
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xenobiotic in the lipid bilayer [21].

2. Hydrolytic prodestabilization: a mixture of both direct accumulation
and enzymatic hydrolysis generating membrane destabilizers.
Hydrolytic prodestabilization relates to compounds that are not only
membrane destabilizers, but further to enzymatic hydrolysis, gen-
erate also new destabilizer products. This occurs mainly with esters
[22].

3. Reactive toxicity: non-enzymatic reactions with endogenous com-
pounds proteins, DNA). Reactive toxicity occurs when a reactive
compound creates adducts with proteins and/or DNA by covalent
binding, either directly or through generation of reactive oxygen
species [23].

4. Pro-active toxicity: metabolic transformation of the molecule into
more toxic compounds. Similarly to hydrolytic prodestabilization,
pro-active toxicity is the MechoA of compounds that are first me-
tabolised to become highly toxic compounds, i.e. reactants (MechoA
3), indirect enzyme disruptors (MechoA 5) and direct dockers
(MechoA 6).

5. Indirect enzyme disruption: modification of the environment of an
enzyme, preventing its normal activity. Enzymes function under
specific conditions. Indirect enzyme disruption occurs when these
conditions, such as pH, or the relative abundancy of the oxidized
and reduced forms of a cofactor, are changed.

6. Direct docking interaction: binding to a docking site of a key protein
(enzyme, receptor, ion channel). Direct docking interaction includes
all mechanisms that involve a specific interaction with enzymes,
receptors or ion channels by binding to a docking site (which can be
the active site or an allosteric site). This can result in the inhibition
or blocking of the target protein or on the contrary the induction of
it.

MechoA 2, which includes an enzymatic hydrolysis, is actually an
example of “Metabolic transformation of the molecule” for MechoA 4,
but this was separated out from MechoA 4 for two reasons:

First, hydrolysis splits the molecule into two compounds which are
more hydrophilic than the parent, decreasing the narcotic effect, which
is mostly a detoxification process. However, hydrolysis can generate
highly toxic compounds in some cases. This is the case for dinoseb
acetate which is rapidly and quantitatively hydrolysed when adminis-
tered to rats, releasing dinoseb, which is an oxidative phosphorylation
uncoupler [24].

Second, MechoA 4 concerns the molecules which are activated by
metabolism to give more active compounds than the parent (i.e. with an
adverse biological activity). However, some exceptions may occur:
metabolic oxidation, not hydrolysis, can also generate a less reactive or
less toxic compound as is the case for benzaldehyde which is rapidly
oxidized to benzoic acid [25].

These two exceptions, leading to different outcomes, explain the
need for subcategorization of the generic MechoA framework described
above.

However, even if they share a similar or have the same MIE, the
different categories defined in the list above needed to be split further
into subgroups as presented in Table 1 such that one single MechoA
subgroup relates to one QSAR model per endpoint (e.g. daphnid 48 h
EC50 value). The numbering of the subgroups in MechoA 4 are con-
sistent with the MechoA of the product generated by the metabolisation
of the parent compound. Thus, MechoA 4.1 refers to compounds that
will be transformed into MechoA 1 products. For MechoA 4.3, the end
products are reactants (MechoA 3) and so on. The MechoA of RedOx
cycling is assigned the number 4.4 as it is metabolised repeatedly in a
cyclic way. This mechanism is harmful, because the xenobiotics will
metabolise between a reduced and an oxidized form, generating re-
active oxygen species (ROS) each time, and depleting NAD(P)H stocks
[26].

The designation of these detailed MechoAs is important, because
they separate out compounds that need specific QSAR models to predict
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