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1. Introduction

In 1966, Fujita (see [6]) considered the following initial value problem

Uy = Au+uP, xeR', t>o0,

u(x,0) = up(x),  x€RY, (1.1)

where N > 1,p > 1 and ug(x) is a bounded positive continuous function. He has shown that there is a critical exponent
p; =1+ % such that the solution u(x, t) of (1.1) blows up in finite time for all ug(x) if 1 < p < p7; and there are global
solutions and nonglobal solutions if p > p}. The number p7 is the so-called Fujita critical exponent. In[15,28], Hayakawa and
Weissler have also proved that p} belongs to the blow-up case. In fact, a similar Fujita’s critical exponent for the following
Cauchy problem is also given as p}, = m + 2.

u=Au"+uv", xeR', t>0

u(x, 0) = ug(x), xe€RY, (1.2)

wherep > 1,m > 1lor1 > m > max{0,1 — %} and up(x) is nonnegative bounded and continuous function. In [7,10,
24] they have proved that the solution u(x, t) of (1.2) blow up if 1 < p < p},; while both global and non-global positive

solutions exist if p > p7 . For the case of the critical exponent p = p* = m + % in [21,22] Mochizuki, Mukai and Suzuki
have proved that the solutions of (1.2) blow up in finite time (see also [9,11,27]).
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In particular, when m > 1, after the transformation u(x, t) = av™(bx, t), a = m™ @~V b = m®-m/20—1 the equation
in (1.2) is translated to

ve = v*Av 4+ vP, (1.3)
where @ = ”‘T_] € (0,1)and 8 = %‘H € (1, 400), and one of the results derived in [ 10] reads as follows

(1) For1 < 8 <o+ 1+ 2/N(1 — @) there are no global positive solutions.
(2) For B > @ + 1+ 2/N(1 — «), there are both global solution and solutions blowing up in finite time.

Recently, in [31-33] Winkler dropped the restriction @ € (0, 1) in (1.3) by considering general positive p, and studied
the following Cauchy problem

u =vPAu+ul, xeR', t>0

u(x,0) = up(x), xeR" (1.4)

where g € CO(RV) N L°(RN) positive and p > 1 as well as g > 1. That the exponent p = 1 indeed appears as some kind
of turning point for the diffusion coefficient in degenerate parabolic equations not in divergence form is already indicated
in [13,20,31] where it is proved that the support of a weak solution to (1.4) does not increase with time if p > 1. This
behavior, contrary to the case p < 1, may be interpreted as a consequence of the fact that near points where u in small,
diffusion is weakened more effectively when p > 1. Moreover, in [33] he obtained the following results:

(i) For1 <g<p+1(resp.1 <q < % if p = 1) all positive solutions of (1.4) are global but unbounded provided that
ug(x) decreases sufficiently fast in space.
(ii) For ¢ = p + 1, all positive solutions of (1.4) blow up in finite time.
(iii) For g > p + 1, there are both global and non-global positive solutions, depending on the size of uy(x).

It follows from (i)—(iii) that there is a critical growth exponent g. = p + 1 for (1.4) which now, however, has a slightly
different meaning and is independent of the space dimension N. Moreover, unlike Eqs. (1.1) and (1.2), the Eq. (1.4) forp > 1
has the property that the critical exponent g. would be the same if we replaced RV with any smooth bounded domain
£2 C RV; namely, for this case, the results in [29,31] imply global existence for 1 < q < p + 1 and the proof of Theorem 5.1
in [33] have shown that both global existence and finite time blow-up may occur in £2 if ¢ > p + 1. The critical exponent
q = p + 1in bounded domain is more subtle (see [5,11,30]).

In [8], Galaktionov studied the Cauchy problem of the following quasilinear degenerate parabolic equation

u; = div(|VulP72vu) +u?,  (x,t) € RN x (0,T),

u(x, 0) = up(x), xeRY, (1.5)

where p > 2,q > 1 and ug(x) is a nonnegative bounded and continuous function. Eq. (1.5) is the prototype for a certain
class of degenerate equations and appears in the theory of non-Newtonian fluids (see [1]). It is known that the equation is
degenerate in the sense that it is not parabolic when Vu = 0 and shares the same property of heat localization (see [8]). In
particular, there is a similar Fujita type result proved in [8] which reads as follows:

()ifl<g<p—1+ %, then the solution u(x, t) of (1.5) blows up in finite time if ug(x) # 0;

B)lfg>p—1+ %, there are both global solutions for small initial values of ug(x) and solutions blowing up in finite
time.

It is shown that the numberq} =p — 1+ % is also a Fujita type critical exponent. Whenq =¢q} =p—1+ %, in[25] Qi
have proved that there exists no global solution of (1.5) with non-negative and continuous initial value, i.e.q; =p — 1+ ﬁ
belongs to the blow-up case.

For more references on this topic, we refer the readers to see [2,18,26] and references therein.

In this paper we shall study the behavior of solutions u(x, t) of (1.5) while the initial values ug(x) have slow decay near
x = oo. For instance, in the case

up(x) = M|x|™°

with M > 0and a > 0, we are interested in the question of global existence and nonexistence of solutions for (1.5) in terms
of M and a. These problems have been studied by Lee and Ni[17] and Gui and Wang [12] for the Cauchy problem (1.1).In[16]
Huang, Mochizuki and Mukai have obtained similar results for the Cauchy problem of the semilinear system of equations
Uy = Au + vP, v, = Av + u? with pq > 1. Recently, Mukai, Mochizuki, Huang (see [23] for the case 1 < m < p) and Guo
(see [14] for the case (1 — %)Jr < m < 1) have studied the Cauchy problem (1.2). It is shown that forp > p; = m+ % there
is a secondary critical exponent a* = pfim such that the solution of (1.2) blows up in finite time for any initial value ug(x)

which behaves like |x|~* at |x] = oo ifa € (0, a*); and there are global solutions for the initial value uy(x) which behaves
like |x|~® at |x| = oo if a € (a*, N).

Motivated by their works, in [19] we have considered the Cauchy problem (1.4) for the case of N > 2,p > 1 and
g>p+1+ % and proved that there is a new secondary critical exponent a* = such that the solution of (1.4) blows

2
q—p—1
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