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a b s t r a c t

In this paper we study non-trivial, non-negative periodic solutions of certain periodic
reaction–diffusion equations with the p-Laplacian under the homogeneous Dirichlet
boundary condition. First, we prove the existence of such periodic solutions, and provide a
priori estimates for their upper bound usingMoser iteration.We also show that the support
of these solutions is independent of time. Further, we establish the attractivity of maximal
periodic solutions using the monotonicity method. One of our motivations is a generalized
Verhulst model with time-periodicity and nonlinear diffusion in a bounded heterogeneous
environment.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In population dynamics, the classical logistic growth model, or Verhulst model, takes the form u′ = mu(1 − bu). In
this model, it is assumed that the dynamics is independent of spatial location (a more realistic interpretation is that only
the average population density is studied), and the growth and self-limitation (competition) of the species are constant
(independent of time). In the last few decades, many modifications to the model have been introduced, and increasingly
sophisticated models have been studied. For example, the diffusive model ut −∆u = u(m− bu) takes into account spatial
dependence, and assumes that population diffuses to areas of lower concentration through randommovement. Further, the
heterogeneous environmentmodel takes into account spatial dependence of the growth rate and competition rate by taking
m and b to be functions of x.
In this paper, we further generalize the Verhulst model by introducing the following new elements:
(i) Nonlinear diffusion: We assume that, instead of random movement, population diffuses to areas of lower

concentration according to the gradient in concentration; in other words, we assume that the diffusion is gradient-driven.
Specifically, we shall model the diffusion by the p-Laplacian instead of the standard Laplacian.
(ii) Time-periodicity: In addition to the spatial dependence of the heterogeneous model, we also take into account the

natural assumption that growth and competition rates are seasonal; in other words, we assume thatm and b are functions
of x and t , and that they are T -periodic in t .
(iii) Finally, we generalize the model by assuming that growth and competition may depend nonlinearly on the

population density. This introduces the exponents α and β in our model below.
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The above considerations thus lead us to the following periodic reaction–diffusion problem with p-Laplacian:
∂u
∂t
− div(|∇u|p−2∇u) = uα(m(x, t)− b(x, t)uβ), (x, t) ∈ Ω × R+, (1.1)

u(x, t) = 0, (x, t) ∈ ∂Ω × R+, (1.2)
u(x, 0) = u0(x), x ∈ Ω, (1.3)

where p > 2, 1 ≤ α < p − 1, β > 0, the functions m and b are continuous and T -periodic, andΩ is a bounded domain of
RN with smooth boundary ∂Ω .
In this population dynamics model, the species is restricted to the bounded heterogeneous environment Ω whose

boundary is prohibitive to the species. We are interested in nonnegative solutions to the problem.
This equation is in fact much more widely applicable than in population dynamics. Nonlinear p-Laplacian equations

appear in many applications such as non-Newtonian fluid flow, gas flow in porous media and population dynamics. The
reaction term of the Eq. (1.1) consists of the source term m(x, t)uα and absorption term b(x, t)uα+β . Reaction–diffusion
equations with such reaction terms can be regarded as generalizations of Fisher or Kolomogorv–Petrovsky–Piscunov
equations.
Many papers are concerned with the steady-state or elliptic version of the problem (1.1) and (1.2) when the functionsm

and b are autonomous, i.e., independent of t; see for example [1–4] and references therein. In the past two decades, there
is also considerable interest in the existence, uniqueness, regularity and other qualitative properties, such as blow-up and
finite speed of propagation of disturbances, of weak solutions of the initial-boundary value problem; see for example [5–9].
When p = 2, (1.1) becomes a semi-linear periodic parabolic equation, and the problem has been studied by many

researchers [10–17]. The technique used for the semi-linear problem relies heavily on the associated linearized periodic
eigenvalue problem [12], and is clearly not applicable for p 6= 2. In fact, although the eigenvalue problem for the p-Laplacian
elliptic operator under the homogeneous Dirichlet boundary condition has been investigated extensively [4,18–20], little is
known about the periodic parabolic eigenvalue problem with p-Laplacian (p 6= 2) as yet. Most of the known results so far
concern the existence of periodic solutions [21–25].
The main result of this paper is the existence of maximal periodic solutions of (1.1) and (1.2) and their attractivity

with respect to solutions of the initial-boundary value problem (1.1)–(1.3). The paper is organized as follows: After some
preliminaries in Section 2, we give the existence result for the periodic problem (1.1) and (1.2) in Section 3. This is
accomplished by extending the monotone iterative method for regular parabolic boundary value problems to the periodic
degenerate parabolic problem at hand. It should be noted that the monotone iterative method used here bypasses the
necessity to find lower bounds (as in [22,23], for example) which can put undue restrictions on the reaction terms. In
Section 4 we provide a priori estimates for the upper bound of these periodic solutions using Moser iteration. These a priori
estimates are crucial for the proof of the attractivity of themaximal periodic solution using themonotonicitymethod, which
is presented in Section 5. To round off Section 4, we also prove that the support of periodic solutions is independent of t .
Regarding this last result, the biological interpretation is that the population does not vanish in any part of the domain at
any time.

2. Preliminaries

The notations used in this paper are standard. For example, ‖ · ‖p and ‖ · ‖1,p (1 ≤ p ≤ ∞) refer to Lp andW 1,p norms
respectively. Unless otherwise stated, the reference to the spaceΩ is understood and will not be mentioned explicitly.
Throughout this paper, we assume that
(H1) b(x, t) ∈ CT (Q T ) is non-negative, where QT = Ω × (0, T ) and CT (Q T ) is the class of functions that are continuous

in Ω̄ × R and T -periodic with respect to t .
(H2)m(x, t) ∈ CT (Q T )may change sign, but

(a) Ω+ :=

{
x ∈ Ω :

1
T

∫ T

0
m(x, t)dt > 0

}
6= ∅

or
(b) Ω+ := {x ∈ Ω : m(x, t) > 0 for t ∈ [0, T ]} 6= ∅.

By (H2a), there exists x0 ∈ Ω such that 1T
∫ T
0 m(x0, t)dt = m0 > 0. Moreover by the continuity of m(x, t), there exists

δ > 0 such that
1
T

∫ T

0
min

x∈B(x0,δ)
m(x, t)dt ≥

m0
2
. (2.1)

Let λ1 and ψ1(x), respectively, be the first eigenvalue and its corresponding eigenfunction of the eigenvalue problem
−div(|∇ψ |p−2∇ψ) = λ|ψ |p−2ψ in B(x0, δ)
ψ = 0 on ∂B(x0, δ).

By [19], we know that λ1 > 0, and that ψ1(x) is positive in B(x0, δ), belongs to C1,ν(B(x0, δ)) for some ν ∈ (0, 1) and is of
class C2,ν in a neighborhood of ∂B(x0, δ).
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