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a b s t r a c t

In this paper, a time-fractional central symmetric diffusion-wave equation is investigated
in a sphere. Two types of Neumann boundary condition are considered: the mathematical
condition with the prescribed boundary value of the normal derivative and the physical
condition with the prescribed boundary value of the matter flux. Several examples of
problems are solved using the Laplace integral transformwith respect to time and the finite
sin-Fourier transform of the special type with respect to the spatial coordinate. Numerical
results are illustrated graphically.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The conventional theory of heat conduction is based on the classical (local) Fourier law, which relates the heat flux
vector q to the temperature gradient. In combination with a law of conservation of energy, the Fourier law leads to the
parabolic heat conduction equation. It is well known that from a mathematical viewpoint, the Fourier law in the theory of
heat conduction and the Fick law in the theory of diffusion are identical. In combination with the balance equation for mass,
the Fick law leads to the classical diffusion equation. Nonclassical theories, in which the Fourier law and the standard heat
conduction equations are replaced bymore general equations, constantly attract the attention of researchers. Some of these
theories were formulated in terms of the theory of heat conduction, others in terms of the diffusion theory. For an extensive
bibliography on this subject and further discussion see, for example, [1–5] and references therein.

The time-fractional diffusion-wave equation can be obtained as a consequence of the balance equation for mass and
the time-nonlocal dependence between the matter flux vector j and the concentration gradient with the ‘‘long-tale’’ power
kernel [6,7] (see also [8])

j(t) = −
k

0(α)

∂

∂t

∫ t

0
(t − τ)α−1 grad c(τ ) dτ , 0 < α ≤ 1, (1)

j(t) = −
k

0(α − 1)

∫ t

0
(t − τ)α−2 grad c(τ ) dτ , 1 < α ≤ 2, (2)

where k is the diffusion conductivity and 0(α) is the Gamma function.
Eqs. (1) and (2) can be interpreted in terms of fractional calculus:

j(t) = −kD1−α
RL grad c(t), 0 < α ≤ 1, (3)

j(t) = −kIα−1 grad c(t), 1 < α ≤ 2. (4)
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Here Iα f (t) and Dα
RLf (t) are the Riemann–Liouville fractional integral and derivative of the order α, respectively. The

constitutive Eqs. (3) and (4) yield the time-fractional diffusion-wave equation with Caputo fractional derivative of the
order α.

Many of the universal electromagnetic, acoustic, and mechanical responses can be modeled accurately using the frac-
tional diffusion-wave equation [9]. This equationwas used [10] to describe diffusion in porousmedia,which exhibits a fractal
geometry, and to study the propagation of mechanical diffusive waves in viscoelastic media with a power-law creep [11].
Based on this equation, Mainardi and Paradisi [12] investigated viscoelastic processes with applications to acoustics and
seismology. The time-fractional diffusion-wave equation also describes important physical phenomena in amorphous, col-
loid and glassy materials, in fractals and percolation clusters, comb structures, dielectrics and semiconductors, biological
systems, polymers, random and disordered media and geophysical and geological processes [4–6,13–18].

Starting from the pioneering works [19–21], the time-fractional diffusion-wave equation has received the widespread
attention of many researchers. Various problems in curvilinear coordinates were considered in [22–31], among others.

In this paper the solutions to a time-fractional diffusion-wave equation are investigated in a sphere in the case
of Neumann boundary conditions. For the first time, two distinct types of Neumann conditions are considered: the
mathematical one with the prescribed boundary value of the normal derivative of a function and the physical one with
the prescribed boundary value of the matter flux. It should be noted that in the case of classical diffusion (α = 1) these
two types of boundary condition coincide, but for fractional diffusion-wave equation α ≠ 1 they are essentially different.
The Laplace integral transformwith respect to time t allows us to eliminate time-differentiation. In the case of the Dirichlet
problem for the time-fractional diffusion-wave equation in a sphere with the prescribed boundary value of a function, the
standard substitution v = rc results in the corresponding Dirichlet boundary problem for a finite interval. Therefore, the
usual finite sin-Fourier transform with respect to the spatial coordinate r can be applied [23] (see also [32]). In the case of
the Neumann problem, the substitution v = rc is inadequate because the boundary condition for the function v becomes
more complicated. In this case the finite sin-Fourier transform of the special type [33] should be used.

The results obtained in this paper can be also used as a constituent part for further analysis of nonlinear problems (see, for
example, the paper [34] in which the time-fractional diffusion-wave equation with spatial dependent diffusion coefficient
was considered).

2. The mathematical Neumann problem

2.1. Statement of the problem

Consider the central symmetric time-fractional diffusion-wave equation in a sphere with a radius R

∂αc
∂tα

= a


∂2c
∂r2

+
2
r

∂c
∂r


, 0 < r < R, 0 < t < ∞, 0 < α ≤ 2, (5)

under zero initial conditions

t = 0 : c = 0, 0 < α ≤ 2, (6)

t = 0 :
∂c
∂t

= 0, 1 < α ≤ 2, (7)

and the prescribed boundary value of the normal derivative

r = R :
∂c
∂r

= w(t). (8)

In Eq. (5), we use the Caputo fractional derivative [35,36]

dα f (t)
dtα

=
1

0(n − α)

∫ t

0
(t − τ)n−α−1 d

nf (τ )

dτ n
dτ , n − 1 < α < n, (9)

with the following Laplace transform rule

L


dα f (t)
dtα


= sαL {f (t)} −

n−1−
k=0

f (k)(0+)sα−1−k, n − 1 < α < n. (10)
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