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a b s t r a c t

A two-species model with transitions between population interactions is studied. Rich
dynamics is observed as the number and quality of equilibria change when model pa-
rameters and functional responses vary. Existence and stability of equilibria and nonex-
istence of periodic solutions are established, existence of some bifurcation phenomena
are analytically and numerically studied, explicit threshold values are computed to de-
termine the kind of interaction (mutualism, competition, host–parasite) between the
species, and several numerical examples are provided to illustrate the main results in this
work.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Two ormore species can be found coexisting under different kinds of associations. The static classification of interactions
like mutualism and competition among others, is in some cases inadequate as such relation may vary depending on
population densities, age or size of individuals, as well as on several environmental parameters. Population models with
conditional interaction, represented via nonconstant functions have been the focus of several studies including [1–4]. Besides
the rigorous mathematical work, they clearly highlight the practical importance and relevance of studying these models.
One important point is that the presence of a species involves cost and benefits to the second species sharing the same
environment, and therefore their interspecific relationship needs to be represented by continuous functions that can assume
positive and negative values. Nature provides us with several examples for such variable interactions. For instance, ants
benefit from their interactions with aphids, because the latter provide certain secretions which are rich in sugars and amino
acids; ants at the same time provide protection to aphis from their natural predators. However, the magnitude of these
benefits depends on the relative densities of the two populations involved: at low aphid densities, benefits for them are
high, but at higher densities such benefits are low, none or even negative [5,1,2]. There are even examples where predator
and prey may interchange role, as in the case of lobsters and whelks in the islands of Malgas and Markus, in South Africa,
[1,6], all depending again on population densities and environmental parameters.

In this paper, we study the dynamics of a two-species model that incorporates two rational α-functions representing
the variable interaction between the species. We study existence and stability of equilibria, possible existence of periodic
solutions, bifurcation phenomena, and we explicitly establish threshold values that help determine whether given
equilibrium points represent mutualism, competition or host–parasite behavior. Several numerical examples are given to
illustrate the main results on the number equilibria and their stability properties, bifurcations, and how the interaction
between the species varies with population densities and environmental parameters.
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2. Model formulation

We consider the following model
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dt

= x
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,

(2.1)

where x(t) ≥ 0, y(t) ≥ 0 represent the population densities, and K1, K2 are the carrying capacities of species 1 and 2
respectively. Classically, one considersα1 andα2 as fixed parameters, and their signs determine the interspecific interaction.
More precisely, we have:

Mutualism, if α1 > 0 and α2 > 0, competition, if α1 < 0 and α2 < 0, host–parasite, if α1 > 0 and α2 < 0, or α1 < 0 and
α2 > 0.

Here, we consider functions

α1(y) =
a1 − b1y
c1 + d1y

, α2(x) =
a2 − b2x
c2 + d2x

, (2.2)

to represent such specific interactions (including saturation effects) between both species, where the parameters
a1,2, b1,2, c1,2, d1,2, representing changes in environmental conditions are all positive. Thus, the interspecific interactions
are not fixed but vary with the environmental parameters and the system state, and can take positive or negative values.

Note. Observe that if c1 = c2 = 1 and d1 = d2 = 0, then our model reduces to the one studied in [4], where the authors,
among other results, give a detailed analysis of existence and stability of equilibria of the corresponding model.

Invariance and boundedness of solutions. Observe that any solution of (2.1) that starts at (x0, 0), with x0 > 0 will approach
the equilibrium P1 = (K1, 0), as dictated by the logistic equation

dx
dt

= x
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
.

Similarly, solutions will approach P2 = (0, K2), for any starting point (0, y0), with y0 > 0. This implies that solutions
starting inside the positive quadrant R2

+
cannot cross the axes, and therefore this region R2

+
is invariant for the system (2.1).

Where the solutions starting inside the positive quadrant R2
+
go, depends on the specific interactions represented by the

functions α1 and α2. For general interaction functions, consider first mutualism, that is, α1(x, y) > 0, and α2(x, y) > 0, for
all x > 0, y > 0. Then, from (2.1),
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Recalling that the logistic equation dw/dt = w(1 − w/k), with w0 > 0, k > 0 has strictly positive solutions, and using
a differential inequality from [7], we can conclude that x(t) > w(t) > 0 and similarly y(t) > w(t) > 0 for t ≥ 0.

With the same reasoning, for the case of competition, i.e. α1(x, y) < 0, α2(x, y) < 0, we have that 0 < x(t) < w(t) ≤ K1,
if x0 < K1, and 0 < x(t) < w(t) ≤ x0, if x0 > K1, for all t ≥ 0. Similar inequalities are true for y(t). Both populations stay
bounded.

The host–parasite case, say, α1(x, y) > 0 and α2(x, y) < 0, is a combination of the two cases discussed above.

3. Local stability of equilibria

The system (2.1), (2.2) has four equilibria:

P0 = (0, 0), P1 = (K1, 0), P2 = (0, K2), P3 = (x3, y3),

where (x3, y3) is the solution of

K1 − x +
(a1 − b1y)y
c1 + d1y

= 0

K2 − y +
(a2 − b2x)x
c2 + d2x

= 0.
(3.1)

Denote A = K1d1 + a1, and B = K2d2 + a2. Then, solving for x in the first equation of the system (3.1), we get
x =

K1c1+Ay−b1y2

c1+d1y
. The parabola in the numerator has vertex on the first quadrant, and one positive root

ŷ = (A +


A2 + 4b1c1K1)/2b1. (3.2)
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