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a b s t r a c t

This paper studies the problems of global exponential stability of reaction–diffusion high-
order Markovian jump Hopfield neural networks with time-varying delays. By employing
a new Lyapunov–Krasovskii functional and linear matrix inequality, some criteria of global
exponential stability in the mean square for the reaction–diffusion high-order neural
networks are established, which are easily verifiable and have a wider adaptive. An
example is also discussed to illustrate our results.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Hopfield neural networks (HNNs) with time delays and their various generalization have been successfully employed
in many areas such as pattern recognition, associate memory, and combinatorial optimization (see [1–9]). The earlier
HNNs model proposed by Hopfield [10,11], based on analog circuit consisting of capacitors, resistors, and amplifiers, was
represented by a system of ordinary equations.

Over the past fewdecades, the dynamics of reaction–diffusionHopfield neural networks (RDHNNs)with time delays have
been extensively investigated (see [12–17]), as regards the diffusion effect that cannot be avoided in the neural networks
model when electrons are moving in an asymmetric electromagnetic field. So, the stability of RDHNNs with time delays
should be a focused topic of theoretical as well as practical importance.

The systems with Markovian jumping parameters have attracted considerable attention in recent years (see, e.g.,
[18–22]). This is due to the fact that the systems sometimes have a phenomenon of information latching (see, [18]). A
widely used approach to dealing with the information latching problem is to extract finite state representations. Thus,
HNNs with Markovian jumping parameters have been discussed; see, for example, [18] and the references therein. In this
paper, we study the problems of global exponential stability of reaction–diffusion high-order Markovian jump Hopfield
neural networks (RDHOMJHNNs) with time-varying delays. This paper is also an extension of our previous work [23]. To
the best of the authors’ knowledge, there are very few results on stability of the equilibrium point for RDHOMJHNNs with
time-varying delays in spite of the stability for the higher order HNNs and stochastic neural networks have been deeply
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studied (see, [18–29]). By employing a new Lyapunov–Krasovskii functional and linearmatrix inequality (LMI), some criteria
of global exponential stability in the mean square for the stochastic neural networks are established, which are easily
verifiable. An example is also discussed to illustrate our results.

2. Model description and preliminaries

We consider the following RDHOMJHNNs with time-varying delays
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where r(t), t > 0 is a right-continuous Markov process on the probability space which takes values in the finite space
S = {1, 2, . . . ,N} with generator G = {γij} (i, j ∈ S) (also called jumping transfer matrix) given by (see, [18])

P{r(t + ∆) = j|r(t) = i} =


γij∆ + o(∆), if i ≠ j
1 + γii∆ + o(∆), if i = j,

(2)

∆ > 0 and lim∆→0 o(∆)/∆ = 0, γij ≥ 0 is the transition rate from i to j if i ≠ j, and γii = −
∑

j≠i γij.
Assume that u(t, x) = (u1(t, x), . . . , un(t, x))T ∈ Rn, x = (x1, . . . , xm)T ∈ Rm, ai > 0, τ(t), Dik(t, x, u) ≥ 0, Wij, fj, gj, Vi,

ξi(θ, x), ∂ui/∂n = 0 (t ≥ t0 ≥ 0, x ∈ ∂Ω) and µ(Ω) > 0 have the same meanings as those in [17], Tij, Tijl are the first- and
second-order synaptic weights of system (1) (see, [25]), and the superscript ‘T ’ presents the transpose.

We assume throughout that the neuron activation functions fj(uj), gj(uj), j = 1, . . . , n, satisfy the following conditions:
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T of system (1) with conditions (3), we can rewrite system (1) as the
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where ζl =
1
2 (gl(ul(t − τ(t), x)) + gl(u∗

l )) and |ζl| ≤ Ml.
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