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a b s t r a c t

We study an initial boundary value problem of a model describing the evolution in time
of diffusive phase interfaces in solid materials, in whichmartensitic phase transformations
driven by configurational forces take place. Themodel was proposed earlier by the authors
and consists of the partial differential equations of linear elasticity coupled to a nonlinear,
degenerate parabolic equation of second order for an order parameter. In a previous paper
global existence of weak solutions in one space dimension was proved under Dirichlet
boundary conditions for the order parameter. Herewe show that global solutions also exist
for Neumann boundary conditions. Again, the method of proof is only valid in one space
dimension.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In [1] we have investigated a system of partial differential equations modeling the evolution of a phase interface in solid
bodies and proved that in the case of one space dimension an initial boundary value problem to this system has global
solutions.

This system has been derived in [2,3] from a sharp interface model for martensitic phase transformations in a solid
body. The sharp interface model consists of the equations of linear elasticity theory coupled with an equation posed on the
interface, which determines the normal speed of the interface. To find the phase field model, the interface condition was
transformed in a first step by rigorous mathematical arguments into a Hamilton–Jacobi transport equation for a smooth
order parameter. In a second step a regularizing termwas inserted into the Hamilton–Jacobi equation to avoid that the order
parameter develops singularities after a finite time. This regularizing term, which consists of the Laplace operator with a
small positive parameter ν, was inserted such that the second law of thermodynamics holds. For details of this procedure, for
mathematical investigations of phase field models in both cases that the order parameter is conserved and non-conserved,
and for the background in continuummechanics we refer to [4,2,5–14].

This derivation suggests that solutions of this system of partial differential equations converge to solutions of the original
sharp interface model for ν → 0. The usage of the new system of partial differential equations as a phase field model for
martensitic transformations depends on this asymptotic behavior. Yet, it is not obvious whether this convergence really
holds. To verify it, we construct in [6] an asymptotic solution for the system of partial differential equation, which indeed
converges to a solution of the sharp interface model for ν → 0.

The asymptotic behavior of the new phase field model differs in an essential way from the asymptotic behavior of the
standard model, which consists of the equations of linear elasticity theory coupled with the Allen–Cahn equation. The
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asymptotic behavior of this standard model is studied in [15] by formal methods. The result given there shows that in the
limit sharp interfacemodel the driving force of the interfacemotion contains a termwith themean curvature of the interface,
which cannot be avoided. On the other hand, the limit model of the new phase fieldmodel does not contain such a curvature
term. It is possible to make the constant multiplying the mean curvature term in the limit model of the Allen–Cahn model
small by choosing a parameter in the Allen–Cahn model appropriately, but in [6] it is shown by analytical considerations
and numerical examples, that in this case the numerical solution of the Allen–Cahn model becomes very ineffective, and
that when the same physical problem is simulated with the new phase field model the computing time is smaller by a large
factor.

This property makes the new phase field model interesting and justifies further investigation. It would be important to
prove rigorously that solutions converge to solutions of the sharp interfacemodel for ν → 0; the result in [6] is formal, since
the asymptotic solutions constructed there satisfy the new phase field model only up to an error term in the right-hand side
of the equations. For a rigorous proof it is necessary to show that the error in the solution caused by this error term in the
right-hand side tends to zero for ν → ∞. Such a proof needs an existence result for the phase field model. In this paper we
do not estimate this error term, but we continue the investigation of the existence theory, which we started in [1]. There
we proved that an initial-boundary value problem to the new phase field model in one space dimension has solutions, if the
displacement field and the order parameter both satisfy Dirichlet boundary conditions. Here we show that solutions exist
for the one-dimensional problem when the order parameter satisfies homogeneous Neumann boundary conditions.

We next formulate the initial-boundary value problem in one space dimension and the main result of the paper. For the
original form of the phase field model in three space dimensions we refer the reader to [1].

LetΩ = (a, d) be a bounded open interval, which represents the material points of a solid bar. Te is a positive constant,
which can be chosen arbitrarily large. We write QTe = (0, Te)×Ω and define

(v, ϕ) =

∫
Z
v(y)ϕ(y)dy,

where Z = Ω or Z = QTe . If v is a function defined on QTe , we denote the mapping x → v(t, x) by v(t). If no confusion is
possible we sometimes drop the argument t and write v = v(t). The crystallographic structure of the material can vary in
space and time. We assume that two different structures, called phases, are possible. The different phases are characterized
by the order parameter S(t, x) ∈ R. A value of S(t, x) near to zero indicates that the material is in the matrix phase at the
point x ∈ Ω at time t , a value near to one indicates that the material is in the second phase. The other unknowns are the
displacement u(t, x) ∈ R3 of the material point x at time t and the Cauchy stress tensor T (t, x) ∈ S3, where S3 denotes the
set of symmetric 3 × 3-matrices. If we denote the first column of the matrix T (t, x) by T1(t, x) and set

ε(ux) =
1
2


(ux, 0, 0)+ (ux, 0, 0)T


∈ S3,

then the unknowns must satisfy the quasistatic equations

−T1x = b, (1.1)
T = D(ε(ux)− ε̄S), (1.2)

St = −c

ψS

ε(ux), S


− νSxx


|Sx| (1.3)

for (t, x) ∈ QTe . Since the Eqs. (1.1) and (1.2) are linear, the inhomogeneousDirichlet boundary condition for u can be reduced
in the standard way to the homogeneous condition. For simplicity we thus assume that u satisfies homogeneous Dirichlet
boundary conditions. The initial and boundary conditions therefore are

u(t, x) = 0, (t, x) ∈ [0, Te] × ∂Ω, (1.4)
Sx(t, x) = 0, (t, x) ∈ [0, Te] × ∂Ω, (1.5)
S(0, x) = S0(x), x ∈ Ω. (1.6)

Here ε̄ ∈ S3 is a given matrix, the misfit strain, and D : S3
→ S3 is a linear, symmetric, positive definite mapping, the

elasticity tensor. In the free energy

ψ∗(ε, S,∇xS) = ψ(ε, S)+
ν

2
|∇xS|2, (1.7)

where

ψ(ε, S) = ψ(ε(∇xu), S) =
1
2


D(ε − ε̄S)


· (ε − ε̄S)+ ψ̂(S), (1.8)

we choose for ψ̂ ∈ C2(R, [0,∞)) a double well potential with minima at S = 0 and S = 1. The scalar product of two
matrices is A · B =

∑
aijbij. Also,

ψS(ε, S) = ∂Sψ(ε, S) = −T · ε̄ + ψ̂ ′(S)
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