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a b s t r a c t

In this paper, the analytical conditions for a periodically forced Duffing oscillator synchro-
nizedwith a chaotic pendulum are developed through the theory of discontinuous dynam-
ical systems. From the analytical conditions, the synchronization invariant domains are
developed. For a better understanding of synchronization of two different dynamical sys-
tems, the partial and full synchronizations of the Duffing oscillator with the chaotic pen-
dulum are presented for illustrations. The control parameter map is developed from the
analytical conditions. Under special parameters, the two systems can be fully and partially
synchronized. Since the forced pendulum has librational and rotational chaotic motions,
the periodically forced Duffing oscillator can be synchronized only with the librational
chaotic motions of the pendulum. It is impossible for the forced Duffing oscillator to be
synchronized with the rotational chaotic motions.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of synchronization goes back to the 17th century. In 1673, Huygens [1] described the synchronization of two
pendulum clocks with a weak interaction. In fact, Huygens discussed the synchronization of two modal shapes of vibration.
The concepts of present synchronizations concern the synchronizations of two or more systems possessing one or more
constraints for synchronicity, and such synchronizations experience the characteristics of asymptotic stability. Once the
two or more systems form a state of synchronization for a specific constraint, such a state should be stable (see, e.g., [2,3]).
The concept of modern synchronization of two dynamical systems was introduced by Pecora and Carroll [4] in 1989, and
they presented a criterion of the sub-Lyapunov exponents to determine the synchronization of two systems connected with
common signals. The common signals act as constraints for such systems. According to this idea, the synchronized circuits
for chaos were presented by Carroll and Pecora [5].

Since then, the research has focused on developing the corresponding control methods and schemes to achieve the
synchronization of two dynamical systems with constraints. For instance, in 1992, Pyragas [6] presented two methods for
chaos control with a small time continuous perturbation, to achieve a synchronization of two chaotic dynamical systems.
In 1994, Kapitaniak [7] used such a continuous control to present the synchronization of two chaotic systems. Ding and
Ott [8] pointed out that the slave system (receiver system) does not necessarily have to be a replica of part of the master
system. In 1995, Rulkov et al. [9] discussed a generalized synchronization of chaos in directionally coupled chaotic systems.
Kocarev and Parlitz [10] developed a general method to construct chaotic synchronized systems, which decomposes the
given systems into active and passive systems. In 1996, Peng et al. [11] presented the chaotic synchronization of n-
dimensional systems, and Pyragas [12] discussed the weak and strong synchronizations of chaos by the coupling strength
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of two dynamical systems. In 1997, Ding et al. [13] provided a review on the control and synchronization of chaos in high-
dimensional dynamical systems. In addition, Boccaletti et al. [14] presented an adaptive synchronization of chaos for secure
communication. Abarbanel et al. [15] used a small force to control a dynamical system to given orbits. In 1998, Pyragas [16]
systematically introduced somebasic ideas about the generalized synchronization of chaos. In 1999, Yang andChua [17] used
linear transformations to investigate generalized synchronization. In 2004, Campos andUrias [18] presented amathematical
description of multi-modal synchronization with chaos. The definition of master–slave synchronization was given, and a
multivalued, synchronized function was introduced. Koronovskii et al. [19] discussed the duration of a process of complete
synchronization of two coupled, identical chaotic systems. In 2006, Teufel et al. [20] presented the synchronization of two
flow-excited pendula, which can recall Huygens’ work [1]. In 2002, Boccaletti et al. [21] gave a systematical review of
the synchronization of chaotic systems. The definitions and concepts are further clarified. In 2006, Chen et al. [22] gave a
review on stability of synchronized dynamics and pattern formation in coupled systems. In addition, there has been interest
in the synchronization of discrete systems with mappings. In 1997, Pecora et al. [23] discussed volume-preserving and
volume-expanding synchronized chaotic systems through discrete maps. Stojanovski et al. [24] used symbolic dynamics
to investigate chaos synchronization, and information entropy was introduced to the synchronization of chaotic systems
through discrete maps. In 2001, Rulkov [25] discussed a regularization of synchronized chaotic bursts. Further, Afraimovich
et al. [26] gave a mathematical investigation of the generalized synchronization of chaos in non-invertible maps in 2002. In
2003, Barreto et al. [27] discussed the geometrical behavior of chaos synchronization through discrete maps.

The synchronization of twoormore dynamical systemsmeans that the corresponding flows of the twoormore dynamical
systems are constrained under specific constraint conditions for a time interval. If the constraint conditions are treated as
constraint boundaries, the synchronization of the two or more dynamical systems can be investigated by the theory of
discontinuous dynamical systems. In 2005, Luo [28] developed a theory for discontinuous dynamical systems (see also [29,
30]). In 2009, Luo [31] used the theory of discontinuous dynamical systems to develop a theory for synchronization of
dynamical systems with specific constraints. In this paper, such a theory for dynamical system synchronization will be
used to investigate the synchronizations of two completely different dynamical systems. Usually, one has investigated the
synchronization of two similar dynamical systems, and the two similar dynamical systems can be simplified to create an
error dynamical system, inwhich the Lyapunovmethod canbeused to determine the asymptotical stability. In fact, using the
new theory of synchronization theory, the two dynamical systems need not be similar. Thus, in this paper, we will consider
that a periodically forced Duffing oscillator will be synchronized with a chaotic pendulum. Consider the chaotic pendulum
to be the master system and the periodically forced Duffing oscillator to be the slave system. Under feedback control, it is
investigated how the periodically Duffing oscillator will be synchronized with the chaotic pendulum. The partial and full
synchronizations of the two systemswill be discussed, and the analytical conditions for the two-system synchronizationwill
be developed. The switching scenarios between asynchronized and synchronized states of the two systemswill be presented,
and the parameter map for such synchronization will be developed. To help one understand the synchronizations, partial
and full synchronizations will be illustrated through the velocity responses, phase planes and analytical conditions.

2. Master and slave systems

Consider a periodically driven pendulum as a master system:

ẍ + a0 sin x = A0 cosωt. (1)

Consider a periodically forced, damped Duffing oscillator as a slave system:

ÿ + d1ẏ − a1y + a2y3 = Q0 cosΩt. (2)

To enforce the slave system of the Duffing oscillator to synchronize with the master system of the pendulum, a control
law should be exerted in the slave system. The following state variables for the slave and master systems are introduced

x = (x1, x2)T and y = (y1, y2)T, (3)

and the corresponding vector fields are defined as

F (x, t) = (x2, F2(x, t))T and F(y, t) = (y2, F2(y, t))T. (4)

So, the master system is in the form

ẋ = F (x, t), (5)

where

ẋ1 ≡ x2 and F (x, t) = −a0 sin x1 + A0 cosωt. (6)

The slave system becomes

ẏ = F(y, t), (7)
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