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a b s t r a c t

In this paper, the second-order cone complementarity problem is studied. Based on the
Fischer–Burmeister function with a perturbed parameter, which is also called smoothing
parameter, a regularization smoothing Newton method is presented for solving the se-
quence of regularized problems of the second-order cone complementarity problem.Under
proper conditions, the global convergence and local superlinear convergence of the pro-
posed algorithm are obtained. Moreover, the local superlinear convergence is established
without strict complementarity conditions. Preliminary numerical results suggest the ef-
fectiveness of the algorithm.
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1. Introduction

The second-order cone complementarity problem (SOCCP in short) is to find a vector z ∈ Rn such that

⟨f (z), z⟩ = 0 and f (z) ∈ K , z ∈ K , (1)

where ⟨·, ·⟩ represents the Euclidean inner product, f : Rn
→ Rn is a continuously differentiable mapping, and K is the

Cartesian product of second-order cones, that isK = K n1×K n2×· · ·×K nm with n1+n2+· · ·+nm = n and n1, n2, . . . , nm ≥ 1.
The ni-dimensional second-order cone K ni is defined by

K ni := {(z1, zT2 )T ∈ R × Rni−1
|z1 ≥ ‖z2‖},

where ‖ · ‖ denotes the Euclidean norm and K 1 denotes the set of nonnegative reals R+ (the nonnegative orthant in R).
When n1 = n2 = · · · = nm = 1, it can be seen that SOCCP is equivalent to the nonlinear complementarity problem
(NCP). Additionally, the Karush–Kuhn–Tucker(KKT) conditions for any second-order cone programming with continuously
differentiable functions can also be written in the form of SOCCP; see Ref. [1].

Recently, the second-order cone complementarity problem has drawn a lot of attention partially due to its wide
applications [1–4]. Analogous to the nonlinear complementarity problem and the semidefinite complementarity problem,
the second-order cone complementarity problem can be employed for a reformulation of (1) as an unconstrained smooth
minimization problem or a system of nonlinear equations to solve. Some methods have been developed to treat it [5–7],
but most of their algorithms depend on the assumptions of monotone or strict complementarity. Moreover, there is little
work for solving the singular second-order cone complementarity problem, in which the derivative of the mapping may be
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seriously ill-conditioned. These motivated us to study this class of problems and obtain a method to try to circumvent one
or several difficulties in their algorithms.

Aswe know, there are two classes ofmethods to handle the singular nonlinear complementarity problems: regularization
methods [8,9] and proximal point methods [10,11], see the report [12] and the references therein for details. In this
paper, we discuss the class of regularization methods for the second-order cone complementarity problem. This class of
methods can deal with the singularity problem by considering a sequence of perturbed problems which possibly have
better conditions. The simplest regularization technique is the so-called Tikhonov regularization, which involves solving
a sequence of complementarity problems, i.e.,

⟨fµ(z), z⟩ = 0 and fµ(z) ∈ K , z ∈ K ,

whereµ is a positive parameter tending to zero and fµ(z) = f (z)+µz. Based on this regularizationmethod, Sun proposed a
regularization Newton method for solving the nonlinear complementarity problems with a P0 function in [9]. It was shown
that the proposed algorithm [9] does not require the strict complementarity condition in the local superlinear (quadratic)
convergence. Lately, Chen andMa gave a new regularization smoothingmethod for the nonlinear complementarity problem
in [13], i.e.,

fµ(z) = f (z) +
1
2
µesin z .

This new regularization method can smooth the complementarity function, but the Tikhonov-regularization method
cannot. Considering the virtues of the regularization technique of Chen et al. and the algorithm of Sun, we shall combine
and extend them to solve the second-order cone complementarity problem.

In this paper, by using a new regularization method, we reformulate the SOCCP into a system of nonlinear equations
based on the Fischer–Burmeister function, and present a regularization smoothing Newtonmethod for solving the sequence
of problems approximately. The proposed algorithm only solves a linear system of equations and performs only one line
search at each iteration. We prove the global convergence and local superlinear convergence of the algorithm. Furthermore,
in the absence of a strict complementarity condition, we establish the local superlinear convergence of the algorithm under
the assumption of nonsingularity. To evaluate the efficiency of the algorithm, we conduct some numerical experiments.

This paper is organized as follows. In the next section, some preliminaries with second-order cones are introduced first,
then a complementarity function is studied and some definitions are included. In Section 3, a regularization smoothing
Newton algorithm is presented. In Section 4, the global convergence and local convergence of the algorithm are discussed.
Numerical results are reported in Section 5. Some conclusions are given in Section 6.

Throughout this paper, all vectors are column vectors, T denotes transpose, I represents an identity matrix of suitable
dimension, and ‖ · ‖ denotes the Euclidean norm defined by ‖x‖ :=

√
xT x for a vector x. R++ means the positive orthant of

R. For any differentiable function f : Rn
→ Rn, ∇f (x) denotes the gradient of f at x. Let intK denote the interior of K . x ≽ y

or x ≻ y means that x − y ∈ K or x − y ∈ intK , respectively. For simplicity, we use x = (x1, x2) ∈ R × Rn−1 for the column
vector x = (x1, xT2)

T .

2. Preliminaries

2.1. Jordan algebra associated with SOC

In this subsection, we shall give the basic facts concerning Euclidean–Jordan algebra [1,14], which provides a useful
methodology of dealing with second-order cone (SOC for short).

A Euclidean–Jordan algebra is a triple (V , ⟨·, ·⟩, ◦) (V for short), where (V , ⟨·, ·⟩) is a finite-dimensional inner product
space over R and (x, y) → x ◦ y : V × V → V is a bilinear mapping which satisfies the following conditions:

(a) x ◦ y = y ◦ x, for any x, y ∈ V .
(b) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V where x2 = x ◦ x.
(c) ⟨(x ◦ y, z)⟩ = ⟨(x, y ◦ z)⟩ for all x, y, z ∈ V .

In this paper, we consider Rn with the Euclidean–Jordan algebra ⟨·, ·⟩ and norm ‖ ·‖. In this algebra, the SOC K is the cone
of squares, i.e., K = {x2 : x ∈ (Rn, ⟨·, ·⟩, ◦)}. For any x = (x1, x2), y = (y1, y2) ∈ Rn, their Jordan product associated with K
is defined by

x ◦ y := (xTy, x1y2 + y1x2).

Some of the prominent relations involving the binary operation ◦ are as follows,

(a) the vector ē = (1, 0, . . . , 0)T ∈ Rn is the unique identity element: x ◦ ē = x.
(b) Write x2 to mean x ◦ x and x + y for the usual componentwise addition of vectors.
(c) x2 ∈ K , for all x ∈ Rn.
(d) If x ∈ K , there exists a unique vector in K , denoted by x1/2, such that (x1/2)2 = x1/2 ◦ x1/2 = x.
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