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a b s t r a c t

This paper presents a control strategy for stabilization of nonholonomic control
systems with strongly nonlinear uncertainties and time delay. By applying a novel
Lyapunov functional, discontinuous transformation and dynamic feedback approach,
robust nonlinear state feedback switching controllers are designed, which can guarantee
the stabilization of closed loop systems. The proposed method proves to be effective by a
simulation example.
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1. Introduction

In the last few decades, there has been a rapidly growing research interest in nonholonomic system, which is a
particular class of nonlinear systems and can be found frequently in the real world, such as mobile robots, car-like vehicle,
under-actuated satellites, the knife-edge and so on. As pointed out in [1,2], such a class of nonlinear systems cannot
be asymptotically stabilized at the origin by only using continuous state feedback control signal. Therefore, control of
nonholonomic systems is extremely challenging. To date, several controller designs have been proposed to achieve the
asymptotic stabilization or exponential regulation for nonholonomic control systems [3–16] such as smooth time-varying
feedback control strategies in [4–7], and discontinuous feedback techniques in [8–10].
As shown in [4], many nonlinear mechanical systems with nonholonomic constraints on velocities can be transformed,

either locally or globally, to driftless nonholonomic systems in the so-called chained form. There have been several
research works [4–7,17,18] for such a class of nonholonomic systems. Recently, much attention [12–16] has been paid
to the nonholonomic systems with drift uncertain nonlinearity for considering the possible modeling errors and external
disturbance.
However, most modelings considered are in ideal cases. From a practical point of view, when modeling a mechanical

system, time delay should be taken into account. On the other hand, time delay in systems is always unknown, which may
result in large obstacles for control problems. How to overcome the difficulties from the existence of the time delay, will be a
challenging problem. To the best of the authors’ knowledge, there is no result for the nonholonomic systemswith time delay.
In this paper, we introduce a new class of chained nonholonomic systems with drift uncertain nonlinearities and time

delay, and then study the problem of robust state feedback stabilization for the concerned nonholonomic systems. Since the
nonholonomic system considered in this note contains the time delay, it cannot be handled by general existing methods.
The constructive design method proposed in this note is based on a combined application of the novel discontinuous
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transformation technique, the dynamic feedback approach and the new Lyapunov functional. The switching control strategy
for the first subsystem is employed to achieve the robust asymptotic stabilization.

Notation. Throughout this paper, ‖ · ‖ denotes the Euclidean norm. A real symmetric matrix X > 0(≥ 0) denotes X being a
positive definite (positive semi-definite)matrix.λmax(X) andλmin(X) represent for themaximumandminimumeigenvalues
of the matrix X , individually. A = (aij)m×n is a m × n matrix, then denote |A| = (|aij|)m×n. I is used to denote an identity
matrix with proper dimension.

2. Problem formulation and preliminaries

Consider the following nonholonomic system with strong nonlinear drifts and time delay
ẋ0(t) = u0(t)+ λ0x0(t),
ẋ1(t) = u0(t)x2(t)+ φd1(t, x0(t), x(t), x(t − τ)),
...

ẋi(t) = u0(t)xi+1(t)+ φdi (t, x0(t), x(t), x(t − τ)),
...

ẋn(t) = u1(t)+ φdn(t, x0(t), x(t), x(t − τ)) (1)

where [x0(t), x(t)]T = [x0(t), x1(t), . . . , xn−1(t)]T ∈ Rn and u(t) = [u0(t), u1(t)]T ∈ R2 are system state and control input,
respectively; the functions φdi (·)’s are regarded as the input and state-driven uncertainty delayed functions; τ is a unknown
time delay satisfying τ ≤ τ̄ , and τ̄ is a known constant.
Suppose that the system (1) satisfies the following assumption, which will be the base of the coming control design and

performance analysis.

Assumption 1. For every 1 ≤ i ≤ n, there exit nonnegative constants δijl, αijl, βijl, Cil and positive integers Ni such that the
following inequality holds

|φdi (t, x(t), x(t − τ))| ≤
Ni∑
l=1

Cil
n∏
j=1

(
|x0(t)|δijl |xj(t)|αijl |xj(t − τ)|βijl

)
. (2)

It is further assumed that δijl, αijl and βijl satisfy
∑n
j=1[δijl + j(αijl + βijl)] ≤ i,

∑n
j=1(αijl + βijl) ≥ 1, and

∑n
j=1 βijl ≤ 1 for ∀l.

Remark 1. From the system (1), it can be observed that the delay part xi(t − τ), as well as the part xi(t), exists not only in
xj-subsystems (j ≥ i), it is also in xj-subsystems (j ≤ i). Then, the system considered in this paper is more general and has
better applicability.

Remark 2. In this paper, Assumption 1 is imposed on the uncertain delayed functions of system (1). From (2), we can see
that the backstepping recursive approachwidely used in [12,16] cannot be effective for system (1). In this notewewill resort
to the novel dynamic feedback approach to construct the controller for the system (1).

Lemma 1. There exist constants ai (i = 1, 2, . . . , n), α > 0 and matrix Q > 0 such that

QA+ ATQ ≤ −I, QB+ BTQ ≥ αI, (3)

where

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a1 −a2 −a3 · · · −an

 ,
B = diag{1, 2, . . . , n}.

Remark 3. Lemma 1 can be derived from the Lemma 1 in [19] easily, then the proof is omitted.

3. Controller design

In this section, we use two separate stages to globally asymptotically stabilize the system (1). Firstly, the control u0(t)
should be designed for x0-subsystem; in the second stage, we design u1(t) to guarantee all states of the rest in system (1)
convergence to zero.
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