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a b s t r a c t

This paper studies stability of equilibria of differential equations with time-dependent
delay and non-Lipschitz nonlinearity. For this class of problems, we develop a novel
method of analysis, the relative nonlinearmeasuremethod. Using thismethod, we obtain a
sufficient condition for exponential stability. Moreover, this condition is used to study the
stability of the equilibrium of a neural network model. Finally, some examples illustrate
that our results are improvement and extension of some existing ones.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we discuss exponential stability of differential equations with the form

du(t)
dt
= F(u(t))+ G(u(t − τ(t))), t ≥ t0

u(t) = φ(t), t ∈ [t0 − b, t0]
(1.1)

where t0 ≥ 0 and b > 0 are constants, F and G are nonlinear partially Lipschitz continuous operators from an open subset
Ω of Rn into Rn, u(t) ∈ Ω for t ≥ t0, the delay function τ(t) satisfies 0 ≤ τ(t) ≤ b for t ≥ t0, and φ(·) ∈ C([t0 − b, t0],Ω)
is an initial function with the norm ‖φ‖ = supt0−b≤s≤t0 ‖φ(s)‖, here C([t0 − b, t0],Ω) denotes the space of all continuous
functions from [t0 − b, t0] intoΩ .
Stability analysis of the delay differential equations is important for many problems in applications. Many excellent

results were obtained in this area [1–14]. Some such results are obtained using Lyapunov functions [1,4,10]. Constructing
a Lyapunov function may be a difficult task. Besides, some existing results rely on restrictive conditions on the coefficients
of the problem such as Lipschitz continuity [8], strict monotonicity [11], and boundedness [7,14]. This paper presents a
new method of stability analysis for (1.1) with minimal assumptions on F and G. The latter are only required to be partially
Lipschitz continuous and delay τ(t) is assumed to be bounded. Our method also does not require constructing a Lyapunov
function. The method is used to obtain the sufficient condition for exponential stability of the equilibria of (1.1), which
provides estimates for the exponential decay of solutions. We apply these results to study a class of neural networks with
time-dependent delays.
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The paper is arranged as follows. Section 2 presents exponential stability results of equilibria of (1.1). In Section 3, we
apply these results to a class of neural networks with time-varying delays. Conclusions are drawn in Section 4.

2. Main results

We start by introducing some notations, definitions and basic results that will be employed throughout the paper.
Rn is endowed with the l1-norm ‖ · ‖1 defined by ‖x‖1 =

∑n
i=1 |xi| for every x = (x1, x2, . . . , xn)

T
∈ Rn. Ω is an open

subset in Rn andΩi denotes the projection of the subsetΩ on the ith axis of Rn.

Definition 1. The function h : Ωi → R is said to be partially Lipschitz continuous on Ωi, if for any x ∈ Ωi there exists a
constant Lx > 0 such that

|h(y)− h(x)| ≤ Lx|y− x|, ∀y ∈ Ωi.

The constant

LΩi(h, x) = sup
y∈Ωi,y6=x

|h(y)− h(x)|
|y− x|

is called minimal partial Lipschitz constant of hwith respect to x onΩi. Particularly, ifΩi = R, then the function h is called
partially Lipschitz continuous.
The operator f = (f1, f2, . . . , fn) : Ω → Rn is partially Lipschitz continuous onΩ if each function fi is partially Lipschitz

continuous onΩi.

Remark 1. It is obvious that each Lipschitz continuous function is partially Lipschitz continuous. However, some partially
Lipschitz continuous functions may not be Lipschitz continuous.

Definition 2 ([15]). Let f be an operator formΩ to Rn and x0 ∈ Ω . Then
(1) the constant

mΩ(f ) = sup
x,y∈Ω,x6=y

〈f (x)− f (y), sgn(x− y)〉
‖x− y‖1

is called the nonlinear measure of f onΩ;
(2) the constant

mΩ(f , x0) = sup
x∈Ω,x6=x0

〈f (x)− f (x0), sgn(x− x0)〉
‖x− x0‖1

is called the relative nonlinear measure of f at x0 on Ω . Here 〈·, ·〉 denotes the inner product and sgn(x) =
(sgn(x1), sgn(x2), . . . , sgn(xn))T denotes the sign vector of x ∈ Rn, where sgn(r) is the usual sign function of any r ∈ R.

Remark 2. The constants mΩ(f ) and mΩ(f , x0) are allowed to be infinite. However, if f is Lipschitz continuous onΩ , then
mΩ(f ) <∞. If f is partially Lipschitz continuous with respect to x0 onΩ , thenmΩ(f , x0) <∞.

It is useful to notice that, for any point x ∈ Rn,{
‖x‖1 = 〈x, sgn(x)〉 and
‖x‖1 ≥ 〈x, sgn(y)〉 for all y ∈ Rn. (2.1)

Definition 3. Let x∗ be an equilibrium point of the system (1.1) and Ω an open neighborhood of x∗. We say that x∗ is
exponentially stable onΩ if there exist two positive constants α andM such that

‖u(t)− x∗‖1 ≤ Me−α(t−t0) sup
t0−b≤s≤t0

‖φ(s)− x∗‖1, t ≥ t0,

where u(t) is the solution of the system (1.1) initiated from the function φ(·) ∈ C([t0 − b, t0],Ω).
Moreover, if Ω = Rn, i.e., x∗ is exponentially stable on the whole space Rn, the system (1.1) is said to be globally

exponentially stable.

Proposition 1. The solutions of the time-delayed system (1.1) exist in the global time interval [t0,∞).
Proof. The solutions of the time-delayed system (1.1) locally exist [16]. Then the system (1.1) enjoys a solution x(t, φ)
satisfying x(t0, φ) = φ for t ∈ [t0, t∗(φ)) where t∗(φ) ∈ (t0,+∞) or t∗(φ) = +∞ such that [t0, t∗(φ)) is the maximal
right existence interval of the solution x(t, φ). Let T0 ∈ (t0,∞) be any finite time such that x(t, φ) is a solution of the system
(1.1) for t ∈ [t0, T0). Since F ,G is partially Lipschitz continuous, there exist constants LΩ(F , 0), LΩ(G, 0) > 0 such that

‖F(u(t))− F(0)‖ ≤ LΩ(F , 0)‖u(t)‖ and ‖G(u(t))− G(0)‖ ≤ LΩ(G, 0)‖u(t)‖
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