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a b s t r a c t

A delayed Lotka–Volterra two-species predator–prey system with discrete hunting delay
and distributedmaturation delay for the predator population described by an integral with
a strong delay kernel is considered. By linearizing the system at the positive equilibrium
and analyzing the associated characteristic equation, the asymptotic stability of the posi-
tive equilibrium is investigated andHopf bifurcations are demonstrated. It is found that un-
der suitable conditions on the parameters the positive equilibrium is asymptotically stable
when the hunting delay is less than a certain critical value and unstable when the hunting
delay is greater than this critical value. Meanwhile, according to the Hopf bifurcation theo-
rem for functional differential equations (FDEs), we find that the system can also undergo
a Hopf bifurcation of nonconstant periodic solution at the positive equilibrium when the
hunting delay crosses through a sequence of critical values. In particular, by applying the
normal form theory and the centermanifold reduction for FDEs, an explicit algorithmdeter-
mining the direction of Hopf bifurcations and the stability of bifurcating periodic solutions
occurring through Hopf bifurcations is given. Finally, to verify our theoretical predictions,
some numerical simulations are also included at the end of this paper.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, a large number of population models, especially the Lotka–Volterra predator–prey models modeled by
ordinary differential equations (ODEs), have been proposed and studied extensively since the pioneering theoretical works
by Lotka [1] and Volterra [2]. To reflect that the dynamical behavior of themodels depends on the past history of the system,
it is often necessary to incorporate time delays into the models. Therefore, a more realistic predator–prey model should be
described by delayed differential equations. Let x(t) and y(t) denote the population density of prey and predator at time
t , respectively, and suppose that the predator population at every age stage has the ability to predate and that the prey
population captured by the predator population in the past is all contributing to the predator population at time t; then
in this case the growth dynamics of the two species can be described by the following delayed Lotka–Volterra two-species
predator–prey system with distributed delays:

ẋ = x(t)
[
r1 − a11x(t)− a12

∫ t

−∞

F(t − s)y(s)
]
ds,

ẏ = y(t)
[
−r2 + a21

∫ t

−∞

G(t − s)x(s)ds− a22y(t)
]
,

(1.1)

∗ Corresponding author. Tel.: +86 9314938635.
E-mail address: chzhang72@163.com (C.-H. Zhang).

1468-1218/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.nonrwa.2010.05.001

http://www.elsevier.com/locate/nonrwa
http://www.elsevier.com/locate/nonrwa
mailto:chzhang72@163.com
http://dx.doi.org/10.1016/j.nonrwa.2010.05.001


4142 C.-H. Zhang et al. / Nonlinear Analysis: Real World Applications 11 (2010) 4141–4153

where the constants r1 > 0 and r2 > 0 denote the intrinsic growth rate of the prey species and the death rate of the predator
species, respectively; aij (i, j = 1, 2) are all positive constants, and

r1
a11
, a12, a21 and a22 represent the carrying capacity of the

prey population, the predation coefficient of the predator, the transformation rate of prey captured by the predator to the
predator population and the overcrowding rate of the predator population itself, respectively; the bounded non-negative
functions F(s) and G(s) are called the delay kernel, and they satisfy the following normalized conditions:∫

∞

0
F(s)ds = 1,

∫
∞

0
G(s)ds = 1. (1.2)

Systems such as (1.1) with various delay kernels and delayed intraspecific competitions have been investigated
extensively by many researchers; see [3–11]. For example, when system (1.1) has no effects of delays, that is, F(s) =
G(s) = δ(s), where δ denotes Dirac delta function, Chen [3] and Zhang and Feng [11] showed that the existence of a positive
equilibrium of (1.1) implies its global asymptotic stability. When F(s) = δ(s − τ)(τ ≥ 0) and G(s) = δ(s − η)(η ≥ 0),
namely, system (1.1) has two different discrete delays, He [12] and Lu andWang [13] investigated the stability of the positive
equilibrium of the system, and they found that the positive equilibrium is globally asymptotically stable for any values
of delays τ and η when the coefficients of the system satisfy the condition a11a22 − a12a21 > 0. In addition, under the
condition thatη > 0, by consideringη as the bifurcation parameter andusing the linearizationmethod, Faria [4] investigated
the stability of the positive equilibrium of system (1.1) and the Hopf bifurcation of nonconstant periodic solutions near
the positive equilibrium, and the normal form of Hopf bifurcations was also given by using the normal form theory and
the center manifold theorem developed by Faria and Magalhães [14]. For the same model, Ruan [5] and Yan and Chu [8]
also investigated the stability of the positive equilibrium of system (1.1) and the Hopf bifurcation of nonconstant periodic
solutions by regarding the sum of two delays τ and η as the bifurcation parameter. Furthermore, for the study of system
(1.1) with delayed intraspecific competitions, one can refer to [6,9,10].
Assume that F(s) = δ(s − τ)(τ ≥ 0); then system (1.1) is reduced to the following Lotka–Volterra two-species

predator–prey system with a discrete delay and a distributed delay:
ẋ = x(t)[r1 − a11x(t)− a12y(t − τ)],

ẏ = y(t)
[
−r2 + a21

∫ t

−∞

G(t − s)x(s)ds− a22y(t)
]
,

(1.3)

where the nonnegative constant τ can be interpreted as the hunting delay of the predator population. The delay kernel
function G(s) may take the so-called ‘‘weak’’ generic kernel function G(s) = αe−αs (α > 0) and ‘‘strong’’ generic kernel
function G(s) = α2se−αs (α > 0), where the ‘‘weak’’ generic kernel implies that the importance of events in the past
simply decreases exponentially the further one looks into the past while the ‘‘strong’’ generic kernel implies that a particular
time in the past is more important than any other [15]. In the case that G(s) takes the ‘‘weak’’ generic kernel function
G(s) = αe−αs(α > 0), Song and Yuan [7] investigated the stability of the positive equilibrium of system (1.3) and Hopf
bifurcations of nonconstant periodic solutions by using the linearization method and regarding the discrete hunting delay
τ as the bifurcation parameter. It is shown that the positive equilibrium of system (1.3) is asymptotically stable when the
discrete hunting delay τ is less than a certain critical value and unstablewhen τ is greater than this critical value. In addition,
by using the normal form theory and the center manifold reduction for FDEs, Song and Yuan [7] also studied the direction
of the Hopf bifurcations and the stability of bifurcated periodic solutions occurring through Hopf bifurcations.
However,when the delay kernelG(s) takes the ‘‘strong’’ generic kernel functionG(s) = α2se−αs (α > 0), it is an unknown

problem how the discrete hunting delay τ and the delay kernel G(s) = α2se−αs (α > 0) (i.e., the parameter α) affect the
dynamics of system (1.3). Therefore, in this paper, we study mainly the effects of the hunting delay τ and the parameter
α in the ‘‘strong’’ delay kernel on the dynamical behaviors of system (1.3). By means of the change of variables, we first
transform system (1.3) with the ‘‘strong’’ delay kernel into a four-dimensional system of delayed differential equations with
a single delay. Then, by linearizing the resulting four-dimensional system at the positive equilibrium and analyzing the
associated characteristic equation, the asymptotic stability of the positive equilibrium is investigated and Hopf bifurcations
are demonstrated. In particular, by applying the normal form theory and the center manifold reduction for FDEs due to
Hassard, Kazarinoff andWan [16], an explicit algorithm determining the direction of the Hopf bifurcations and the stability
of bifurcated periodic solutions occurring through Hopf bifurcations is given.
This paper is organized as follows. In Section 2, by linearizing the resulting four-dimensional system at the positive

equilibrium and analyzing the associated characteristic equation, the asymptotic stability of the positive equilibrium and
the existence of Hopf bifurcations are investigated. In Section 3, to determine the direction of the Hopf bifurcations and the
stability of bifurcated periodic solutions occurring through Hopf bifurcations, an explicit algorithm is given by applying the
normal form theory and the center manifold reduction for FDEs developed by Hassard, Kazarinoff and Wan [16]. To verify
our theoretical predictions, some numerical simulations are also included in Section 4.

2. Stability of equilibria and existence of Hopf bifurcations

It is easy to see from the normalized condition (1.2) on the kernel function that system (1.3) has two feasible boundary
equilibria E0(0, 0), E1(

r1
a11
, 0) and a unique positive equilibrium E(x∗, y∗)when the condition
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