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a b s t r a c t

Helical flows for aMaxwell fluid are studied between two infinite coaxial circular cylinders,
at time t = 0+; the inner cylinder begins to rotate around its axis and to slide along
the same axis due to the torsional and longitudinal time dependent shear stresses. Exact
solutions obtained with the help of finite Hankel transform and, presented under series
form, satisfy all imposed initial and boundary conditions. The corresponding solutions
for Newtonian fluid are also given as limiting cases. Finally, the influence of pertinent
parameters – as well as a comparison between Maxwell and Newtonian fluids – on the
velocity components and shear stresses is also analyzed by graphical illustrations.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

At present, numerical solutions to fluid mechanics problems are very attractive due to wide availability of computer
programs. But these numerical solutions are insignificant if they cannot be compared with either analytical solutions or
experimental results. Exact solutions are important not only because they are solutions of some fundamental flows, but
also because they serve as accuracy standards for approximate methods, whether numerical, asymptotic or experimental.
The first exact solutions corresponding to the motions of non-Newtonian fluids in cylindrical domains, seem to be those
of Ting [1] for second grade fluids, Srivastava [2] for Maxwell fluids and Waters and King [3] for Oldroyd-B fluids. In the
meantime, a lot of papers regarding such motions have been published [4–15]. However, most of them deal with motion
problems in which the velocity field is given on the boundary. To the best of our knowledge, the first exact solutions for
motions of non-Newtonian fluids due to a given shear stress on the boundary are those of Waters and King [16], Bandelli
et al. [17] and Erdogan [18] over an infinite plate and Bandelli and Rajagopal [19] in cylindrical domains. However, little
work has been done for motions of non-Newtonian fluids due to a shear stress given on the boundary [20–26] for motions
in cylindrical domains.
The helical flow is of interest to both theoretical and practical points of view. The flow in an annular region between

two coaxial circular cylindrical surfaces due to a combination of their rotation and the flow along the axis is known as
helical flow, because, in general, the streamlines are helices [27]. Such a motion is very important to study the mechanism
of viscoelastic fluids flow in many industry fields, such as oil exploitation, chemical and food industry, bio-engineering
and lubrication studies [28]. Such a flow is of considerable basic interest because it includes as special cases, simple shear,
channel, Couette, Poiseuille and pipe flows. The term helical flow was first introduced in 1956 by Rivlin [29] who derived
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the velocity distribution for fluids of the differential type in a concentric annular space. Coleman and Noll [30] also studied
the concentric helical flow and gave the fundamental theory for a general fluid. Using Taylor series expansion of the velocity
profiles, Wood [31] has considered the helical flow of an Oldroyd-B fluid due to the combined action of rotating cylinders
and a constant pressure gradient. Fetecau et al. [32–37] studied some helical flows ofMaxwell and Oldroyd-B fluids between
two infinite coaxial cylinders and within an infinite cylinder by means of the expansion theorem of Steklov. The velocity
fields and the associated tangential stresses are determined in form of series in terms of Bessel functions. More recently,
work on helical flows for ordinary and fractional derivative models appear in [38–41].
Themain goal of this note is to extend the results of Bandelli and Rajagopal [19, Sect. 4 and 5] to find some exact solutions

to a new class of motions of Maxwell fluid. More exactly, our interest is to find the velocity field and the shear stress
corresponding to the motion of Maxwell fluid between two infinite coaxial circular cylinders, with prescribed torsional and
longitudinal time dependent shear stresses of the form Kt , on the boundary of inner cylinder. The general solutions, obtained
by means of finite Hankel transforms and presented under series form in terms of Bessel functions J0(•), Y0(•), J1(•), Y1(•),
J2(•) and Y2(•), satisfy all imposed initial and boundary conditions. The similar solutions corresponding to the Newtonian
fluid appear as limiting cases. Finally, the solutions that have been obtained are compared by graphical illustrations and the
influence of the pertinent parameters on the fluid motion is also analyzed by graphs.

2. Basic governing equations

The Cauchy stress T in an incompressible Maxwell fluid is given by [32–37]

T = −pI+ S, S+ λ(Ṡ− LS− SLT ) = µA, (1)

where−pI denotes the indeterminate spherical stress due to the constraint of incompressibility, S is the extra-stress tensor,
L is the velocity gradient, A = L+ LT is the first Rivlin Ericksen tensor,µ is the dynamic viscosity of the fluid, λ is relaxation
time, the superscript T indicates the transpose operation and the superposed dot indicates thematerial time derivative. The
model characterized by the constitutive equations (1) contains as special case the Newtonian fluid model for λ → 0. The
model (1) is consistent with some important microscopically models of polymers and its predictions of the normal-stress
differences are qualitatively acceptable. It has been quite useful in the study of dilute polymeric fluids in viscoelasticity. For
the problem under consideration we shall assume a velocity field and an extra-stress of the form [2,4,42]

v = v(r, t) = w(r, t)eθ + v(r, t)ez, S = S(r, t), (2)

where eθ and ez are unit vectors in the θ and z-directions of the cylindrical coordinate system r, θ and z. For such flows the
constraint of incompressibility is automatically satisfied. If the fluid is at rest up to the moment t = 0, then

v(r, 0) = 0, S(r, 0) = 0, (3)

and Eq. (1) implies Srr = 0 and the meaningful equations [32](
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where τ1 = Srθ and τ2 = Srz are the shear stresses that are different of zero.
The balance of the linear momentum, in the absence of a pressure gradient in the axial direction and neglecting body

forces, leads to the relevant equations (∂θp = 0 due to the rotational symmetry) [4,32]
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where ρ is the constant density of the fluid. Eliminating τ1 and τ2 between Eqs. (4) and (5) we attain the governing equations

λ
∂2w(r, t)
∂t2

+
∂w(r, t)
∂t

= ν

(
∂2

∂r2
+
1
r
∂

∂r
−
1
r2

)
w(r, t); r ∈ (R1, R2), t > 0, (6)

λ
∂2v(r, t)
∂t2

+
∂v(r, t)
∂t

= ν

(
∂2

∂r2
+
1
r
∂

∂r

)
v(r, t); r ∈ (R1, R2), t > 0, (7)

where ν = µ/ρ is the kinematic viscosity of the fluid.
The system of partial differential equations (6) and (7), with adequate initial and boundary conditions, can be solved

in principle by several methods, their effectiveness strictly depending on the domain of definition. In our case the integral
transforms technique presents a systematic, efficient and powerful tool. The Laplace transform can be used to eliminate the
time variable while the finite Hankel transform can be employed to eliminate the spatial variable. However, the inversion
procedure for the Laplace transform is heavy enough and needs much ingenuity. Here, we shall use the finite Hankel
transforms.
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